Femtosecond optoinjection of intact tobacco BY-2 cells using a reconfigurable photoporation platform
View/ Open
Date
14/11/2013Author
Grant ID
EP/H045368/1
EP/J01771X/1
Keywords
Metadata
Show full item recordAbstract
A tightly-focused ultrashort pulsed laser beam incident upon a cell membrane has previously been shown to transiently increase cell membrane permeability while maintaining the viability of the cell, a technique known as photoporation. This permeability can be used to aid the passage of membrane-impermeable biologically-relevant substances such as dyes, proteins and nucleic acids into the cell. Ultrashort-pulsed lasers have proven to be indispensable for photoporating mammalian cells but they have rarely been applied to plant cells due to their larger sizes and rigid and thick cell walls, which significantly hinders the intracellular delivery of exogenous substances. Here we demonstrate and quantify femtosecond optical injection of membrane impermeable dyes into intact BY-2 tobacco plant cells growing in culture, investigating both optical and biological parameters. Specifically, we show that the long axial extent of a propagation invariant (“diffraction-free”) Bessel beam, which relaxes the requirements for tight focusing on the cell membrane, outperforms a standard Gaussian photoporation beam, achieving up to 70% optoinjection efficiency. Studies on the osmotic effects of culture media show that a hypertonic extracellular medium was found to be necessary to reduce turgor pressure and facilitate molecular entry into the cells.
Citation
Mitchell , C A , Kalies , S , Cizmár , T , Heisterkamp , A , Torrance , L , Roberts , A G , Gunn-Moore , F J & Dholakia , K 2013 , ' Femtosecond optoinjection of intact tobacco BY-2 cells using a reconfigurable photoporation platform ' , PLoS One , vol. 8 , no. 11 , e79235 . https://doi.org/10.1371/journal.pone.0079235
Publication
PLoS One
Status
Peer reviewed
ISSN
1932-6203Type
Journal article
Rights
© 2013 Mitchell et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.