St Andrews Research Repository

View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells.

View/Open
srep00858.pdf (658.2Kb)
Date
2012
Author
Rudhall, Andrew Peter
Antkowiak, Maciej
Tsampoula, Xanthi
Mazilu, Michael
Metzger, N Klaus
Gunn-Moore, Frank J
Dholakia, Kishan
Keywords
Ultrashort femtosecond pulsed lasers
Membrane permeabilisation
Mammalian cells
Q Science
Metadata
Show full item record
Abstract
The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pulse energy and number of pulses, by quantifying the efficiency of optoinjection for these parameters. Depending on pulse duration and pulse energy we identify two distinct membrane permeabilisation regimes. In the first regime a nonlinear dependence of order 3.4-9.6 is exhibited below a threshold peak power of at least 6 kW. Above this threshold peak power, the nonlinear dependence is saturated resulting in linear behaviour. This indicates that the membrane permeabilisation mechanism requires efficient multiphoton absorption to produce free electrons but once this process saturates, linear absorption dominates. Our experimental findings support a previously proposed theoretical model and provide a step towards the optimisation of laser-mediated gene delivery into mammalian cells.
Citation
Rudhall , A P , Antkowiak , M , Tsampoula , X , Mazilu , M , Metzger , N K , Gunn-Moore , F J & Dholakia , K 2012 , ' Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells. ' Nature Science Reports , vol 2 , no. 858 , pp. 1-5 . DOI: 10.1038/srep00858
Publication
Nature Science Reports
Status
Peer reviewed
DOI
http://dx.doi.org/10.1038/srep00858
Type
Journal article
Rights
© 2012 Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
Collections
  • University of St Andrews Research
  • Biology Research
  • Physics & Astronomy Research
  • Biomedical Sciences Research Complex (BSRC) Research
  • Institute of Behavioural and Neural Sciences Research
URI
http://hdl.handle.net/10023/3919

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

How to submit research papers

The full text of research papers can be submitted to the repository via PURE, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter