Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells.
Abstract
The use of ultrashort femtosecond pulsed lasers to effect membrane permeabilisation and initiate both optoinjection and transfection of cells has recently seen immense interest. We investigate femtosecond laser-induced membrane permeabilisation in mammalian cells as a function of pulse duration, pulse energy and number of pulses, by quantifying the efficiency of optoinjection for these parameters. Depending on pulse duration and pulse energy we identify two distinct membrane permeabilisation regimes. In the first regime a nonlinear dependence of order 3.4-9.6 is exhibited below a threshold peak power of at least 6 kW. Above this threshold peak power, the nonlinear dependence is saturated resulting in linear behaviour. This indicates that the membrane permeabilisation mechanism requires efficient multiphoton absorption to produce free electrons but once this process saturates, linear absorption dominates. Our experimental findings support a previously proposed theoretical model and provide a step towards the optimisation of laser-mediated gene delivery into mammalian cells.
Citation
Rudhall , A P , Antkowiak , M , Tsampoula , X , Mazilu , M , Metzger , N K , Gunn-Moore , F J & Dholakia , K 2012 , ' Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells. ' , Nature Science Reports , vol. 2 , no. 858 , pp. 1-5 . https://doi.org/10.1038/srep00858
Publication
Nature Science Reports
Status
Peer reviewed
Type
Journal article
Rights
© 2012 Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.