Files in this item
Two variants of the froidure-pin algorithm for finite semigroups
Item metadata
dc.contributor.author | Jonusas, Julius | |
dc.contributor.author | Mitchell, J. D. | |
dc.contributor.author | Pfeiffer, M. | |
dc.date.accessioned | 2017-10-18T15:30:13Z | |
dc.date.available | 2017-10-18T15:30:13Z | |
dc.date.issued | 2018-02-08 | |
dc.identifier | 249695343 | |
dc.identifier | 3d9792a3-36ee-443b-be0d-ad884fc89944 | |
dc.identifier | 85041706757 | |
dc.identifier | 000427321500002 | |
dc.identifier.citation | Jonusas , J , Mitchell , J D & Pfeiffer , M 2018 , ' Two variants of the froidure-pin algorithm for finite semigroups ' , Portugaliae Mathematica , vol. 74 , no. 3 , pp. 173-200 . https://doi.org/10.4171/PM/2001 | en |
dc.identifier.issn | 0032-5155 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/1704.04084v1 | |
dc.identifier.other | ORCID: /0000-0002-9881-4429/work/47356677 | |
dc.identifier.other | ORCID: /0000-0002-5489-1617/work/73700820 | |
dc.identifier.uri | https://hdl.handle.net/10023/11879 | |
dc.description.abstract | In this paper, we present two algorithms based on the Froidure-Pin Algorithm for computing the structure of a finite semigroup from a generating set. As was the case with the original algorithm of Froidure and Pin, the algorithms presented here produce the left and right Cayley graphs, a confluent terminating rewriting system, and a reduced word of the rewriting system for every element of the semigroup. If U is any semigroup, and A is a subset of U, then we denote by <A> the least subsemigroup of U containing A. If B is any other subset of U, then, roughly speaking, the first algorithm we present describes how to use any information about <A>, that has been found using the Froidure-Pin Algorithm, to compute the semigroup <A∪B>. More precisely, we describe the data structure for a finite semigroup S given by Froidure and Pin, and how to obtain such a data structure for <A∪B> from that for <A>. The second algorithm is a lock-free concurrent version of the Froidure-Pin Algorithm. | |
dc.format.extent | 28 | |
dc.format.extent | 526370 | |
dc.language.iso | eng | |
dc.relation.ispartof | Portugaliae Mathematica | en |
dc.rights | © 2017, Portuguese Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. | en |
dc.subject | Algorithms | en |
dc.subject | Green's relations | en |
dc.subject | Monoids | en |
dc.subject | Semigroups | en |
dc.subject | QA Mathematics | en |
dc.subject | General Mathematics | en |
dc.subject | DAS | en |
dc.subject.lcc | QA | en |
dc.title | Two variants of the froidure-pin algorithm for finite semigroups | en |
dc.type | Journal article | en |
dc.contributor.sponsor | European Commission | en |
dc.contributor.institution | University of St Andrews.Pure Mathematics | en |
dc.contributor.institution | University of St Andrews.Centre for Interdisciplinary Research in Computational Algebra | en |
dc.contributor.institution | University of St Andrews.School of Computer Science | en |
dc.identifier.doi | 10.4171/PM/2001 | |
dc.description.status | Peer reviewed | en |
dc.identifier.url | http://arxiv.org/abs/1704.04084v1 | en |
dc.identifier.grantnumber | 676541 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.