St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantum electric-dipole liquid on a triangular lattice

Thumbnail
View/Open
Scott_Electric_dipole_NatComm_CC.pdf (532.8Kb)
Date
04/02/2016
Author
Shen, Shi-Peng
Wu, Jia-Chuan
Song, Jun-Da
Sun, Xue-Feng
Yang, Yi-Feng
Chai, Yi-Sheng
Shang, Da-Shan
Wang, Shou-Guo
Scott, James F.
Sun, Young
Keywords
QD Chemistry
TK Electrical engineering. Electronics Nuclear engineering
Biochemistry, Genetics and Molecular Biology(all)
Chemistry(all)
Physics and Astronomy(all)
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.
Citation
Shen , S-P , Wu , J-C , Song , J-D , Sun , X-F , Yang , Y-F , Chai , Y-S , Shang , D-S , Wang , S-G , Scott , J F & Sun , Y 2016 , ' Quantum electric-dipole liquid on a triangular lattice ' , Nature Communications , vol. 7 , 10569 , pp. 1-6 . https://doi.org/10.1038/ncomms10569
Publication
Nature Communications
Status
Peer reviewed
DOI
https://doi.org/10.1038/ncomms10569
ISSN
2041-1723
Type
Journal article
Rights
© The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.
Description
This work was supported by the National Basic Research Program of China (Grant No. 2015CB921201), the National Natural Science Foundation of China (Grant Nos. 11227405, 11534015, 11374347, 11174263 and U1532147) and the Opening Project of Wuhan National High Magnetic Field Center (Grant No. PHMFF2015021). Y.S. also acknowledges the support from Chinese Academy of Sciences (Grants No. XDB07030200 and KJZD-EW-M05).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8255

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter