St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Harmonic inferentialism and the logic of identity

Thumbnail
View/Open
Inferentialism_and_Identity.pdf (329.3Kb)
Date
09/02/2016
Author
Read, Stephen
Keywords
Inferentialism
Identity
Inversion principle
Harmony
Proof-theoretic semantics
Gentzen
Lorenzen
Prawitz
Dummett
Brandom
Griffiths
B Philosophy (General)
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Inferentialism claims that the rules for the use of an expression express its meaning without any need to invoke meanings or denotations for them. Logical inferentialism endorses inferentialism specically for the logical constants. Harmonic inferentialism, as the term is introduced here, usually but not necessarily a subbranch of logical inferentialism, follows Gentzen in proposing that it is the introduction-rules whch give expressions their meaning and the elimination-rules should accord harmoniously with the meaning so given. It is proposed here that the logical expressions are those which can be given schematic rules that lie in a specific sort of harmony, general-elimination (ge) harmony, resulting from applying a certain operation, the ge-procedure, to produce ge-rules in accord with the meaning defined by the I-rules. Griffiths (2014) claims that identity cannot be given such rules, concluding that logical inferentialists are committed to ruling identity a non-logical expression. It is shown that the schematic rules for identity given in Read (2004), slightly amended, are indeed ge-harmonious, so confirming that identity is a logical notion.
Citation
Read , S 2016 , ' Harmonic inferentialism and the logic of identity ' , The Review of Symbolic Logic . https://doi.org/10.1017/S1755020316000010
Publication
The Review of Symbolic Logic
Status
Peer reviewed
DOI
https://doi.org/10.1017/S1755020316000010
ISSN
1755-0203
Type
Journal article
Rights
Copyright © Association for Symbolic Logic 2016. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://dx.doi.org/10.1017/S1755020316000010
Collections
  • University of St Andrews Research
URL
http://journals.cambridge.org/repo_A108EoJ3iqKOjs
URI
http://hdl.handle.net/10023/8212

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter