St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel Monte Carlo approach quantifies data assemblage utility and reveals power of integrating molecular and clinical information for cancer prognosis

Thumbnail
View/Open
verleyen2015srep15563.pdf (530.1Kb)
Date
27/10/2015
Author
Verleyen, Wim
Langdon, Simon P
Faratian, Dana
Harrison, David James
Smith, V Anne
Funder
European Commission
BBSRC
Grant ID
BB/F001398/1
Keywords
QH301 Biology
BDC
SDG 3 - Good Health and Well-being
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Current clinical practice in cancer stratifies patients based on tumour histology to determine prognosis. Molecular profiling has been hailed as the path towards personalised care, but molecular data are still typically analysed independently of known clinical information. Conventional clinical and histopathological data, if used, are added only to improve a molecular prediction, placing a high burden upon molecular data to be informative in isolation. Here, we develop a novel Monte Carlo analysis to evaluate the usefulness of data assemblages. We applied our analysis to varying assemblages of clinical data and molecular data in an ovarian cancer dataset, evaluating their ability to discriminate one-year progression-free survival (PFS) and three-year overall survival (OS). We found that Cox proportional hazard regression models based on both data types together provided greater discriminative ability than either alone. In particular, we show that proteomics data assemblages that alone were uninformative (p = 0.245 for PFS, p = 0.526 for OS) became informative when combined with clinical information (p = 0.022 for PFS, p = 0.048 for OS). Thus, concurrent analysis of clinical and molecular data enables exploitation of prognosis-relevant information that may not be accessible from independent analysis of these data types.
Citation
Verleyen , W , Langdon , S P , Faratian , D , Harrison , D J & Smith , V A 2015 , ' Novel Monte Carlo approach quantifies data assemblage utility and reveals power of integrating molecular and clinical information for cancer prognosis ' , Scientific Reports , vol. 5 , 15563 . https://doi.org/10.1038/srep15563
Publication
Scientific Reports
Status
Peer reviewed
DOI
https://doi.org/10.1038/srep15563
ISSN
2045-2322
Type
Journal article
Rights
Copyright © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Description
WV is a SULSA Systems Biology Prize PhD Student; VAS is supported by the BBSRC Research Council [grant number BB/F001398/1] and Medical Research Scotland [grant number FRG353]. DJH is supported by CASyM Concerted Action [grant number EU HEALTH-F4-2012-305033] and the Chief Scientist Office of Scotland.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/7728

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter