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Novel Monte Carlo approach 
quantifies data assemblage utility 
and reveals power of integrating 
molecular and clinical information 
for cancer prognosis
Wim Verleyen1,†, Simon P. Langdon2, Dana Faratian2, David J. Harrison3 & V. Anne Smith1

Current clinical practice in cancer stratifies patients based on tumour histology to determine 
prognosis. Molecular profiling has been hailed as the path towards personalised care, but molecular 
data are still typically analysed independently of known clinical information. Conventional clinical 
and histopathological data, if used, are added only to improve a molecular prediction, placing a 
high burden upon molecular data to be informative in isolation. Here, we develop a novel Monte 
Carlo analysis to evaluate the usefulness of data assemblages. We applied our analysis to varying 
assemblages of clinical data and molecular data in an ovarian cancer dataset, evaluating their 
ability to discriminate one-year progression-free survival (PFS) and three-year overall survival (OS). 
We found that Cox proportional hazard regression models based on both data types together 
provided greater discriminative ability than either alone. In particular, we show that proteomics data 
assemblages that alone were uninformative (p = 0.245 for PFS, p = 0.526 for OS) became informative 
when combined with clinical information (p = 0.022 for PFS, p = 0.048 for OS). Thus, concurrent 
analysis of clinical and molecular data enables exploitation of prognosis-relevant information that 
may not be accessible from independent analysis of these data types.

Most current clinical oncology practice stratifies patients based on tumour histology to inform prognosis. 
Molecular analyses are heralded as the solution for personalised medicine1, yet most such analyses view 
patients in segmented populations, either comparing molecular signatures across clinical and patho-
logical categories2–6 or evaluating clinicopathological characteristics of clusters based upon molecular 
features7–10. This tends to underestimate the proven value of clinical and pathological information. When 
clinical and pathological information is used in combination with molecular analyses, it is typically in 
a post-hoc manner, that is, attempting to improve a molecular model with clinical information11. This 
places a high burden on molecular data, as it is required to be useful in isolation before the sequential 
addition of clinicopathological data. Here, we investigate a more integrative approach, using ovarian 
cancer as an example, where we analyse molecular and clinical data in concert. We take the point of view 
that molecular data should not replace traditional clinical pathology, but instead add to it.

We show the added value of molecular data in ovarian cancer, a disease with particularly poor 
prognosis: despite often initially good responses to chemotherapy, 65% die by 5 years12,13. There are no 
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predictive biomarkers to direct specific treatment regimens14. Most patients undergo costly, neurotoxic 
platinum plus taxane therapy, though 20–30% do not respond. Alternative therapy with platinum only or, 
less commonly, lower toxicity agents can sometimes be equally effective12,15–17. Thus, personalising prog-
nosis to enable better selection of these treatment options would be of great benefit in ovarian cancer.

We take advantage of the Edinburgh Ovarian Cancer Database18, a resource in which molecular data 
are available on samples with complete histopathology plus clinical outcomes. We develop a novel Monte 
Carlo approach to quantify the usefulness of different data assemblages and show that while proteomics 
data has low information content alone, selected informative proteomic features have high information 
content when viewed in the context of clinicopathological data.

Results
We measured protein and phosphoprotein profiles of 339 clinically-annotated samples from the Edinburgh 
Ovarian Cancer Database (EOCD)18, including markers of proliferation, cell cycle, apoptosis, DNA dam-
age response, estrogen signalling, and epithelial to mesenchymal (EMT) transition. We applied a Cox 
proportional hazards regression model (CPHR) for both progression-free survival (PFS) and overall sur-
vival (OS) to this proteomics data alone, clinicopathological data alone, and combined proteomics and 
clinicopathological data (Fig. 1a–c; measures detailed in Table 1; data available in Supplementary Data 
S1 and described in Supplementary Table S1). The combined models had higher concordance (c-index)19 
than either data type alone (Fig. 1d for PFS; results for OS shown in Supplementary Fig. S1), indicating 
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Figure 1.  Added value of proteomics for predicting progression-free survival. (a–c) Example images 
representing proteomics, a fluorescence AQUA image (a) clinicopathology, a histological slice (b) and the 
combination (c). (d) C-index of Cox proportional hazards regression models for proteomics data only, 
clinicopathological data only, and combined proteomics and clinicopathological data. (e–g) Corresponding 
Monte Carlo (MC) analyses showing histograms of c-index from 10,000 randomised datasets; value of the 
actual analysis is highlighted and its p-value indicated (*-significant); histogram bars are coloured green 
below the actual value and pink above. (h–k) As for (d–g) after LASSO feature selection; selected features 
shown below MC histograms in order of decreasing hazard ratio. Note only proteomics data was randomised 
in (g) and (k).
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a greater discriminative ability; however, both the proteomics and combined models showed significant 
differences in cross-validation, suggesting potential overfitting (Supplementary Table S2).

We then developed a novel Monte Carlo (MC) method to assess the information content of var-
iable assemblages, measuring their capacity to discriminate prognoses. We shuffled the values of the 
variables in question independently with respect to patient (Fig.  2), then built a CPHR, for each of 
10,000 randomised datasets. A p-value was calculated as the proportion of randomised datasets with 
c-index equal to or above the actual model (one-tailed due to directional nature of the c-index). A high 
(non-significant) p-value indicates that the actual data discriminates prognoses little differently than does 
randomly assigned data, and thus the information content in that data assemblage is low; a low p-value 
indicates high information content and significant discriminative capacity.

The MC analysis revealed that the proteomic data alone had low information content (P =  0.889 for 
PFS, 0.617 for OS; Fig.  1e, Supplementary Fig. S1) while the clinicopathological data alone had high 
information content (P <  0.0001 for both PFS and OS; Fig.  1f, Supplementary Fig. S1). Since we were 
specifically interested in whether adding proteomics data to the already information-rich clinicopatho-
logical data was beneficial, we shuffled only the proteomics data in the combined model. This confirmed 
that the apparent increased discriminative ability of the combined model was an artefact (P =  0.530 
for PFS, 0.117 for OS; Fig.  1g, Supplementary Fig. S1). This MC result held regardless of whether the 
c-index from the full model (as in Fig.  1) or a corrected c-index based on cross-validation was used 
(Supplementary Fig. S2).

We then applied LASSO feature selection20 to the data before building our CPHR models, to select 
only the most informative measures. Again, the combined models had greater discriminative ability 
than either individual model (Fig.  1h, Supplementary Fig. S1); this time, cross-validation showed no 
significant differences from the full models (Supplementary Table S2). However, the MC analysis revealed 
more detail: proteomics data alone still had low information content (P =  0.245 for PFS, 0.526 for OS; 
Fig.  1i, Supplementary Fig. S1) and clinicopathological high information content (P <  0.0001 for both 
PFS and OS; Fig.  1j, Supplementary Fig. S1), while the combined models now showed significantly 
increased discriminative capacity due to the added proteomics (P =  0.022 for PFS, 0.048 for OS; Fig. 1k, 
Supplementary Fig. S1). Again, the MC result also held if a corrected c-index based on cross validation 
was used (Supplementary Fig. S2); thus, the significant increase was not due to overfitting in the context 
of the full model. Because only the proteomics data were shuffled in the combined model, the results in 
Fig. 1i and Fig. 1k are directly comparable: proteomics data, which alone had low information content, 
showed added value when used alongside clinicopathological information.

This was not true for the entire proteomics profile, however (Fig.  1e compared to Fig.  1g); thus, 
only carefully selected molecular measures can significantly increase discriminative ability above that 

Clinicopathological Proteomic

Measure Values Protein/phosphoprotein

Measured in

Nucleus Cytoplasm

inputs pERK x

age continuous (days) pβ Catenin x

stratified <  > 50 years pSTAT3 (Ser727) x

histopathology papillary serous pSTAT3 (Ser705) x

clear cell pNFkB x

endometrioid pRB x

mixed histology pH2AX x

mucinous pBRCA1 x

adenocarcinoma p-p53 x

stage stage 1 Ki67 x

stage 2 phosphohistone H3 (pHH3) x

stage 3 cleaved caspase-3 x

stage 4 WT1 x

regimen platinum Snail x

platinum +  taxane Slug x

outputs E-cadherin x

progression-free survival continuous (days) estrogen receptor-β  1 (ERβ 1) x x

overall survival continuous (days) estrogen receptor-β  2 (ERβ 2) x x

Table 1.   Clinicopathological and proteomic measures.
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provided by clinicopathological information. Figure 1i–k and Supplementary Fig. S1 show the features 
selected for PFS and OS, respectively.

Discussion
Our work demonstrates the power of concurrent integration of traditional histopathology plus newer 
molecular measures to create something greater than either alone. Using proteomic profiles of samples 
with complete clinicopathological data, we have shown how incorporating molecular alongside clin-
icopathological data improves survival analyses. In doing so, we have developed a novel Monte Carlo 
analysis to quantify the usefulness of data assemblages.

Machine learning methodologies in molecular analyses of cancer have been criticised for overfit-
ting problems21, and we directly address this problem with our Monte Carlo analysis. We reveal data 
assemblages with low information content yet high performance, whose performance must then be due 
to overfitting. Where 10-fold cross validation of the c-index suggested overfitting issues, our MC anal-
ysis agreed, showing low information content for both proteomics alone and combined datasets with 
no feature selection. However, our MC analysis provided further information where cross-validation 
showed no significant differences, revealing low information content in selected proteomics features 
alone. Only when these proteomics features were combined with selected clinical features did they prove 
to be informative.

outcome predictors

outcome shuffled predictors

outcome shuffled predictorsunshuffled predictors

evaluate all
predictors

evaluate some
predictors

a

b

c

Figure 2.  Shuffling methodology for novel Monte Carlo analysis. (a) Graphical representation of a dataset 
with patient outcome in the leftmost column and the remainder of the columns representing predictor 
variables; each row is coloured uniquely in a gradient to represent data from an individual patient for 
illustrative purposes. (b) For the Monte Carlo analysis, the values of each variable are shuffled, randomising 
that single variable with respect to patient outcome; this is carried out independently for each variable such 
that correspondence both between a variable and outcome, and among variables, is broken. Note this differs 
from standard Monte Carlo analyses, which would shuffle only patient outcome with respect to predictors, 
thus maintaining correspondence among variables. (c) The shuffling procedure can also be performed on a 
subset of variables, to evaluate only the added value of these variables.
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We found that feature selection before survival analysis is key to producing sensible information out 
of the molecular data. Using all available proteomic measures in addition to clinicopathological data at 
first appears to increase the discriminatory ability of survival analysis, but this is in fact due to overfitting. 
However, if feature selection is first applied, the addition of proteomic to clinicopathological data signif-
icantly increases the discriminatory ability of our CPHR model. The measures selected provide insights 
into the biology of ovarian cancer. E-cadherin is related to cell adhesion, and its loss has been reported 
to be associated with poor survival22–24. Caspase-3 perhaps indicates benefits of propensity to apoptosis, 
and has been associated with more favourable patient outcomes25,26. pH2AX is a marker of DNA damage 
repair, while expression of the Wilms’ tumour 1 (WT1) gene has been associated with poor prognosis 
in ovarian cancer27,28. In contrast, nuclear beta-catenin expression has been associated with favourable 
outcomes in this disease29–31.

There is merit in further examination of the data, because the details reveal important features. 
Comparing Fig.  1d,h reveals that the CPHR models that contain all the proteomic data are more dis-
criminatory (higher c-index) than those with only selected proteomic measures; however, we know this 
is due to overfitting from the MC analysis (Fig.  1g). Yet even the selected proteomics measures alone 
have poor discrimination (c-index close to 0.5) and non-significant MC p-values (Fig. 1i), indicating low 
information content. Only when these selected proteomics measures are combined with clinicopatho-
logical measures do we see improvement in the c-index and significant information content revealed by 
MC analysis (Fig. 1k). In particular, this MC analysis is directly comparable to that with just proteomics: 
since only the proteomics variables are shuffled, only the information content of these proteomics meas-
ures are revealed. Thus, the information content of the proteomics differs depending on the context. The 
proteomic data, which alone was uninformative, added value when used alongside clinicopathological 
information.

The above shows the power of our MC approach for assessing data assemblages. The information 
content of a data set can be assessed as a whole by shuffling all variables; alternatively, shuffling only 
those additional variables assesses the benefit of adding specific measurements to an already useful group 
of features. Thus, we present a method of quantifying usefulness of measures when direct success of a 
model may be less meaningful due to overfitting concerns. This quantification methodology could be 
applied to evaluate the discriminative ability of features used to assess patient outcome in many diseases, 
a necessary step for personalised medicine.

Our work demonstrates the path towards a systems pathology approach for personalised medicine. 
We move beyond sequential application of clinicopathological and molecular data to stratify groups or 
to refine models. We analyse proteomics data in concert with traditional histology and clinical meas-
ures, enabling better discrimination than either alone. This was true even though the proteomics data 
was uninformative alone, a stage at which many such molecular studies might otherwise be abandoned. 
Our Monte Carlo-based assessment of information content can quantify the added value of new data, 
thus both enabling the identification of beneficial variable additions and avoiding overfitting. Our results 
generalise to other diseases where long-established pathological analyses already produce valuable infor-
mation that should not be ignored.

Methods
Study Population.  Formalin-fixed, paraffin-embedded ovarian tumour samples were obtained from 
the Edinburgh Ovarian Cancer Database (EOCD) as previously described8,18. The data set consisted of 
339 samples, which form a subset of those analysed in Faratian et al.8. This research was approved by the 
Lothian Research Ethics Committee (08/S1101/41).

Clinicopathological Measures.  Samples in the EOCD were annotated with clinicopathological 
information which were divided into “input” measures—those relating to patient, disease, and treat-
ment characteristics—and “output” measures—those relating to survival. A summary of the clinicopatho-
logical measures is shown in Table  1; data are available in Supplementary Data S1 and described in 
Supplementary Table S1. The output measure of progression-free survival (PFS) represents the number 
of days between the start of treatment and the first signs of cancer recurrence; overall survival (OS) rep-
resents the number of days between the first histological diagnosis and the day of death. Both survival 
measures were right-censored.

Proteomic Measures.  Proteins and subcellular location measured are shown in Table 1. Protein and 
phosphoprotein levels were obtained by automated quantitative immunofluorescence using carefully 
validated antibodies as previously described8. Briefly, tissue microarrays were constructed using trip-
licate samples from each tumour. Immunofluorescence detection of phosphoprotein and other targets 
was performed using methods previously described8,32; antibodies and conditions used are shown in 
Supplementary Table S3. Pan-cytokeratin antibody was used to identify infiltrating tumour cells, DAPI 
counterstain to identify nuclei, and Cy-5-tyramide detection of target for compartmentalised (tissue 
and subcellular) analysis of tissue sections. Monochromatic images of each TMA core were captured at 
x20 objective using an Olympus AX-51 epifluorescence microscope, and high-resolution digital images 
analysed by the AQUAnalysisTM software. If the epithelium comprised < 5% of total core area, the core 
was excluded from analysis. Protein and phosphoprotein expression was quantified by calculating the 
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Cy5 fluorescence signal intensity on a scale of 0–255 within each image pixel, and the AQUA score gen-
erated by dividing the sum of Cy5 signal within the epithelium by the area of the cytoplasm or nucleus 
for cytoplasmic or nuclear measurements, respectively. AQUA scores were averaged from triplicate cores 
and mean values obtained.

Survival Analysis.  Cox proportional hazards regression (CHPR) was applied to clinicopathological 
inputs and proteomic measures, using the cph function in the R package rms (Breslow method; x and 
y set to ‘TRUE’ for use in cross-validation, below), to predict both PFS and OS. Models without feature 
selection were full multivariate models using all measures in Table 1; models using LASSO feature selec-
tion were multivariate models including those features as noted in Fig. 1 and Supplementary Figure S1.  
Validity of the proportional hazards assumption was assessed using visual inspection of plots from the R 
functions survplot and cox.zph, and examination of statistics of Schoenfeld residuals. Coefficients with 
95% confidence intervals and associated Schoenfeld residual statistics for all models are presented in 
Supplementary Table S4. CPHR models were assessed using the concordance index (c-index)19, availa-
ble from the R function validate. The c-index represents the probability that, for two randomly chosen 
patients, the model correctly orders the patients in their outcome measure (here PFS and OS). Ten-fold 
cross-validation was performed computing the c-index for each resample (dxy =  ‘TRUE’), and repeated 
100 times to provide average performance in cross-validation.

Feature Selection.  Feature selection was performed using the least absolute shrinkage and selection 
operator (LASSO)20 to identify the most informative features for OS and PFS. LASSO was applied using 
functions optL1 and profL1 in the R package penalized (and verified with glmnet); the sparsity parameter 
(λ ) was obtained by a likelihood cross-validation with settings: 10-folds and the sparsity parameter lies 
in the interval: 0.001 <  λ  <  50.

Monte Carlo Analysis.  We developed a novel Monte Carlo analysis to evaluate information content 
of any variable assemblage. Figure  2 describes the shuffling methodology graphically: each variable is 
shuffled independently of all others and of patient outcome; all variables or a subset can be shuffled to 
analyse the information content of the entire assemblage or a particular group, respectively. This meth-
odology can be applied with any analysis method that provides a scalar performance measure; we applied 
it to CHPR models evaluated via the c-index (see Results). R code to perform our Monte Carlo analysis 
for CHPR models is provided as Supplementary Data S2; an example vignette applying it to our data is 
available as Supplementary Note S1.
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