Files in this item
Maximal subsemigroups of the semigroup of all mappings on an infinite set
Item metadata
dc.contributor.author | East, J. | |
dc.contributor.author | Mitchell, James David | |
dc.contributor.author | Péresse, Y. | |
dc.date.accessioned | 2014-11-19T10:01:06Z | |
dc.date.available | 2014-11-19T10:01:06Z | |
dc.date.issued | 2015-03-01 | |
dc.identifier | 23107193 | |
dc.identifier | d622aa4b-0740-4abc-883a-339349d48c2d | |
dc.identifier | 84916620178 | |
dc.identifier | 000351857000014 | |
dc.identifier.citation | East , J , Mitchell , J D & Péresse , Y 2015 , ' Maximal subsemigroups of the semigroup of all mappings on an infinite set ' , Transactions of the American Mathematical Society , vol. 367 , no. 3 , pp. 1911-1944 . https://doi.org/10.1090/S0002-9947-2014-06110-2 | en |
dc.identifier.issn | 0002-9947 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/1104.2011v2 | |
dc.identifier.other | ORCID: /0000-0002-5489-1617/work/73700777 | |
dc.identifier.uri | https://hdl.handle.net/10023/5793 | |
dc.description.abstract | In this paper we classify the maximal subsemigroups of the full transformation semigroup ΩΩ, which consists of all mappings on the infinite set Ω, containing certain subgroups of the symmetric group Sym (Ω) on Ω. In 1965 Gavrilov showed that there are five maximal subsemigroups of ΩΩ containing Sym (Ω) when Ω is countable, and in 2005 Pinsker extended Gavrilov's result to sets of arbitrary cardinality. We classify the maximal subsemigroups of ΩΩ on a set Ω of arbitrary infinite cardinality containing one of the following subgroups of Sym (Ω): the pointwise stabiliser of a non-empty finite subset of Ω, the stabiliser of an ultrafilter on Ω, or the stabiliser of a partition of Ω into finitely many subsets of equal cardinality. If G is any of these subgroups, then we deduce a characterisation of the mappings f, g ∈ ΩΩ such that the semigroup generated by G ∪ {f, g} equals ΩΩ. | |
dc.format.extent | 34 | |
dc.format.extent | 466587 | |
dc.language.iso | eng | |
dc.relation.ispartof | Transactions of the American Mathematical Society | en |
dc.rights | © 2014. American Mathematical Society. First published in Transactions of the American Mathematical Society 2014. | en |
dc.subject | QA Mathematics | en |
dc.subject | T-NDAS | en |
dc.subject | BDC | en |
dc.subject | R2C | en |
dc.subject.lcc | QA | en |
dc.title | Maximal subsemigroups of the semigroup of all mappings on an infinite set | en |
dc.type | Journal article | en |
dc.contributor.institution | University of St Andrews.Pure Mathematics | en |
dc.contributor.institution | University of St Andrews.Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | 10.1090/S0002-9947-2014-06110-2 | |
dc.description.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.