Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorFontane, Jerome Jacob Louis
dc.contributor.authorDritschel, David Gerard
dc.contributor.authorScott, Richard Kirkness
dc.date.accessioned2014-08-25T23:01:33Z
dc.date.available2014-08-25T23:01:33Z
dc.date.issued2013-01-14
dc.identifier.citationFontane , J J L , Dritschel , D G & Scott , R K 2013 , ' Vortical control of forced two-dimensional turbulence ' Physics of Fluids , vol. 25 , no. 1 , 015101 . https://doi.org/10.1063/1.4774336en
dc.identifier.issn1070-6631
dc.identifier.otherPURE: 93444500
dc.identifier.otherPURE UUID: ccb8d4a8-0c81-4599-8969-3d1294da867a
dc.identifier.otherScopus: 84873438755
dc.identifier.otherORCID: /0000-0001-5624-5128/work/55378711
dc.identifier.urihttp://hdl.handle.net/10023/5236
dc.descriptionJérôme Fontane is supported by the European Community in the framework of the CONVECT project under Grant No. PIEF-GA-2008-221003.en
dc.description.abstractA new numerical technique for the simulation of forced two-dimensional turbulence[D. Dritschel and J. Fontane, “The combined Lagrangian advection method,” J. Comput. Phys.229, 5408–5417 (Year: 2010)10.1016/j.jcp.2010.03.048] is used to examine the validity of Kraichnan-Batchelor scaling laws at higher Reynolds number than previously accessible with classical pseudo-spectral methods, making use of large simulation ensembles to allow a detailed consideration of the inverse cascade in a quasi-steady state. Our results support the recent finding of Scott [R. Scott, “Nonrobustness of the two-dimensional turbulent inverse cascade,” Phys. Rev. E75, 046301 (Year: 2007)10.1103/PhysRevE.75.046301], namely that when a direct enstrophy cascading range is well-represented numerically, a steeper energy spectrum proportional to k−2 is obtained in place of the classical k −5/3 prediction. It is further shown that this steep spectrum is associated with a faster growth of energy at large scales, scaling like t −1 rather than Kraichnan's prediction of t −3/2. The deviation from Kraichnan's theory is related to the emergence of a population of vortices that dominate the distribution of energy across scales, and whose number density and vorticity distribution with respect to vortex area are related to the shape of the enstrophy spectrum. An analytical model is proposed which closely matches the numerical spectra between the large scales and the forcing scale.en
dc.format.extent12en
dc.language.isoeng
dc.relation.ispartofPhysics of Fluidsen
dc.rights© 2013 American Institute of Physicsen
dc.subjectTwo-dimensional turbulenceen
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleVortical control of forced two-dimensional turbulenceen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Marine Alliance for Science & Technology Scotlanden
dc.contributor.institutionUniversity of St Andrews. Scottish Oceans Instituteen
dc.identifier.doihttps://doi.org/10.1063/1.4774336
dc.description.statusPeer revieweden
dc.identifier.urlhttp://dx.doi.org/10.1063/1.4774336


This item appears in the following Collection(s)

Show simple item record