St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Boosting CO2 electrolysis performance : via calcium-oxide-looping combined with in situ exsolved Ni-Fe nanoparticles in a symmetrical solid oxide electrolysis cell

Thumbnail
View/Open
Tian_2020_JMCA_Boosting_AAM.pdf (987.2Kb)
Date
14/08/2020
Author
Tian, Yunfeng
Liu, Yun
Naden, Aaron
Jia, Lichao
Xu, Min
Cui, Wen
Chi, Bo
Pu, Jian
Irvine, John T.S.
Li, Jian
Keywords
QD Chemistry
Chemistry(all)
Renewable Energy, Sustainability and the Environment
Materials Science(all)
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The electrocatalysis of CO2 to valuable chemical products is an important strategy to combat global warming. Symmetrical solid oxide electrolysis cells have been extensively recognized for their CO2 electrolysis abilities due to their high efficiency, low cost, and reliability. Here, we produced a novel electrode containing calcium oxide-looping and in situ exsolved Ni–Fe nanoparticles by performing a one-step reduction of La0.6Ca0.4Fe0.8Ni0.2O3−δ (LCaFN). The CO2 captured by CaO was electrolyzed in situ by the Ni–Fe nanocatalysts. The cell with this special cathode showed a higher current density (0.632 A cm−2vs. 0.32 A cm−2) and lower polarization resistance (0.399 Ω cm2vs. 0.662 Ω cm2) than the unreduced LCaFN cathode at 800 °C with an applied voltage of 1.3 V. Use of the developed novel electrode offers a promising strategy for CO2 electrolysis.
Citation
Tian , Y , Liu , Y , Naden , A , Jia , L , Xu , M , Cui , W , Chi , B , Pu , J , Irvine , J T S & Li , J 2020 , ' Boosting CO 2 electrolysis performance : via calcium-oxide-looping combined with in situ exsolved Ni-Fe nanoparticles in a symmetrical solid oxide electrolysis cell ' , Journal of Materials Chemistry A , vol. 8 , no. 30 , pp. 14895-14899 . https://doi.org/10.1039/d0ta05518b
Publication
Journal of Materials Chemistry A
Status
Peer reviewed
DOI
https://doi.org/10.1039/d0ta05518b
ISSN
2050-7488
Type
Journal article
Rights
Copyright © 2020 The Author(s). This work has been made available online in accordance with publisher policies or with permission. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the author created accepted manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1039/D0TA05518B
Description
Financial support from National Key Research & Development Project (2016YFE0126900), National Natural Science Foundation of China (51672095), Hubei Province (2018AAA057) and the EPSRC Capital for Great Technologies Grant EP/L017008/1. We are grateful to the China Scholarship Council for funding (201806160178).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/23514

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter