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Boosting CO2 electrolysis performance by calcium oxide-looping 
combined with in situ exsolved Ni-Fe nanoparticles based on 
symmetrical solid oxide electrolysis cell 

Yunfeng Tian,a, d Yun Liu,b Aaron Naden,d Lichao Jia,a, c Min Xu,d Wen Cui,d Bo Chi,a, c* Jian Pu,a, c John 
T.S. Irvine,d Jian Lia, c 

Electrocatalysis CO2 to valuable chemical production is one important strategy to combat global warming. Symmetrical solid 

oxide electrolysis cells have been extensively recognized for their electrolysis of CO2 due to their high efficiency, low cost 

and reliability. Here, we propose a novel electrode with calcium oxide-looping and in situ exsolved Ni-Fe nanoparticles by a 

one-step reduction of La0.6Ca0.4Fe0.8Ni0.2O3-δ (LCaFN). The CO2 captured by CaO is electrolyzed in situ by Ni-Fe nanocatalysts. 

The cell with this special cathode shows higher current density (0.632 A/cm2 vs 0.32 A/cm2), lower polarization resistance 

(0.399 Ω·cm2 vs 0.662 Ω·cm2) compared with unreduced LCaFN cathode at the applied voltage of 1.3 V under 800 °C. The 

novel electrode offers a promising strategy for CO2 electrolysis.

1. Introduction 

Reduction of CO2 emissions and conversion of CO2 into high 

value-added chemical production are efficient strategies for 

limiting climate change. Today, numerous solutions are 

employed for CO2 conversion such as chemical, photocatalytic 

and electrocatalytic methods.1-5 Among them, solid oxide 

electrolysis cells (SOECs) have attracted significant interest due 

to their high efficiency and reliability.6, 7 In order to reduce 

manufacturing costs, the same material can be used both as the 

cathode and anode of SOECs, named as symmetrical solid oxide 

electrolysis cells (SSOECs) (Figure. S1). Further reduction of 

costs can be achieved by minimizing the preparation procedure 

and improving the compatibility of electrolyte/electrode 

interface.8, 9 However, the accompanying challenge is that the 

electrode of SSOECs must exhibit high electrocatalytic activity 

and good stability towards two simultaneous oxygen evolution 

reaction (OER) and CO2 reduction reaction (CO2RR), which puts 

higher requirements on the choice of electrodes. SSOECs 

electrode systems, including Sr2Fe1.5Mo0.5O6-δ,10, 11 

La0.3Sr0.7Fe0.7Cr0.3O3-δ,12 La0.6Sr0.4Co0.2Fe0.8O3-δ,13 

La0.3Sr0.7Fe0.7Ti0.3O3-δ
14 and MnCo2O4,15 have been explored. 

However, low catalytic activity and poor stability at operation 

condition hinder their development although the glorious 

prospect of SSOECs.  

The molecular shape of CO2 is linear and its structure is 

considered as: O = C = O. A major challenge for enhancing the 

CO2RR performance is to increase the capacity of CO2 

adsorption of SOEC cathode. Poor CO2 adsorption capacity at 

the SOEC cathode will lead to starvation of CO2 on the surface 

and therefore cause low electrochemical performance.16-18 

Numerous studies have shown that introducing oxygen 

vacancies at the cathode surface could be an effective way to 

promote the chemical adsorption of CO2.19-21 However, too 

strong adsorption of CO2 on the cathode induced by oxygen 

vacancies hinders the electrocatalytic reactions in some cases. 

If the adsorption is strong, it is not favored for the activation of 

C=O bonds.22 Therefore, effective adsorption and activation of 

CO2 is an important prerequisite for its direct electroreduction 

through SOEC.  

Calcium oxide (CaO) is a conventional CO2 adsorbent.23, 24 

However, directly combining CaO or impregnating CaO into the 

electrode is not particularly beneficial for improving the 

electrochemical performance.25, 26 Fe-based perovskite oxides 

have stable structure, high conductivity, matching TEC with 

electrolyte.27 Herein, we reported a novel perovskite oxide 

La0.6Ca0.4Fe0.8Ni0.2O3-δ (LCaFN). When it is reduced in situ, CaO 

appears on the surface with a large number of Ni-Fe 

nanoparticles. On the one hand, CaO can be used as a reliable 

CO2 adsorbent to improve the adsorption performance of the 

electrode. On the other hand, the in situ exsolved nano Fe-Ni 

alloys are beneficial to improving the electrocatalytic 

performance of the electrode. Therefore, the in situ exsolved 

Ni-Fe nanoparticles and CaO can form a synergistic effect that 

enhances the electrochemical performance of SSOECs. 
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2.   Results and discussion 

Refined XRD patterns of LCaFN and R-LCaFN powders 

(reduced in 5% H2/N2 at 800 °C for 5 h) are shown in Figure. 1(a) 

and Figure. 1(b), respectively. The diffraction peaks of LCaFN 

and R-LCaFN are almost identical, which indicates good stability 

of the LCaFN perovskite structure under reducing atmosphere. 

Moreover, there are some diffraction peaks at 26°, 44°, 52.3° 

and 74° corresponding to (100), (111), (200) and (220) lattice 

planes of FeNi3 (PDF # 65-3244) as shown in Figure. 1(b). This 

reflects an abundance of Ni-Fe nanoparticles exsolved from the 

LCaFN backbone after reduction. In addition, there are peaks 

around 38º and 54º, indicating CaO in situ formed at the surface 

of R-LCaFN. This is because the solid solubility of Ca will 

decrease accompanying the exsolved FeNi3 alloy. The unit cell 

of R-LCaFN is slightly larger than that of LCaFN (volumes of 

58.91 Å3 and 58.02 Å3, respectively) because Fe3+ is transformed 

into Fe2+ with larger ionic radius (0.65 Å and 0.78 Å, 

respectively) under reducing conditions. The smaller Rp, wRp 

and chi2 indicate that the refinement results fit well with the 

patterns. There is a peak at 28° corresponding to CaCO3 when 

R-LCaFN powders are calcined under CO2 at 800 °C for 5 h. 

Interestingly, the CaCO3 peak disappears and only CaO remains 

when these powders are treated in 5% H2/N2 for 0.5 h again 

since CaCO3 has a lower decomposition temperature. To test 

the alternative thermal stability of the R-LCaFN powders, 7 

cycles of heat treatment of R-LCaFN powders under CO2 and 5% 

H2/N2 were measured, as shown in Figure. 1(c). The structure of 

R-LCaFN remains stable after 7 cycles, demonstrating that R-

LCaFN operated in CO2 atmosphere can be recovered by 5% 

H2/N2. Furthermore, R-LCaFN shows much larger specific 

surface area (5.341 m2/g) than LSFN (4.353 m2/g) due to the 

abundant exsolved nanoparticles as shown in Figure. 1(d).  

In terms of microstructure, the LCaFN powders present the 

smooth surface and uniform particle distribution as shown in 

Figure. 2(a) and (b) with compositions closely matching the  

 
Figure. 1 Refined XRD patterns of LCaFN (a) and R-LCaFN (b), XRD patterns 
of R-LCaFN treated in CO2 for 5 h, then treated in 5%H2/N2 for 0.5 h again 
and after 7 redox tests (c). BET curves of LCaFN and R-LCaFN (d). 

 

expected stoichiometric ratio as measured by energy dispersive 
X-ray spectroscopy (EDS) (Figure. S2). A high-resolution 
scanning transmission electron microscopy (STEM) image of the 
LCaFN sample is presented in Figure. 2(c). The lattice fringe 
spacings of 0.216 nm and 0.153 nm can be indexed to (111) and 
(211) planes of the cubic perovskite LCaFN. The corresponding 
EDS mapping of the LCaFN sample illustrated in Figure. 2(d) 
confirms the homogeneous distribution of the composition 
elements. After reduction, densely packed nanoparticles are 
exsolved and embedded homogeneously into R-LCaFN as 
shown in Figure. 2(e)(f) and Figure. S3. High resolution STEM is 
used to identify its composition and the nanoparticle with 
lattice fringe space of 0.196 nm can be indexed to (111) plane 
of the FeNi3 alloy as shown in Figure. 2(g). Besides, more 
aggregation of the element Ni and slight aggregation of Fe also 
proves the exsolved Ni-Fe nanoalloy as shown in Figure. 2(h) 
and Figure. S3-5. In addition, the enrichment of Ca element is 
labeled by the arrow, demonstrating the formation of CaO after 
reduction and it is further identified by EDS as shown in Figure. 
S6. These results are consistent with the previous analysis of 
XRD results. 

EELS analyses are performed to reveal the electronic 
excitations from O 1s to O 2p bands in LCaFN and R-LCaFN as 
shown in Figure. 3(a). The feature of O K-edges is assigned to 
four main peaks: peak A results from hybridization of O 2p 
orbitals with Ni 3d and Fe 3d, while peak B corresponds to La 
5d, Ca 3d, and peaks C and D are thought to contribute to Ni 4sp 
and Fe 4sp as well as scattering resonance of adjacent atoms.27 
It is noted that a lower intensity peak B forms together with the 
decreasing energy difference between peak A and peak B of R-
LCaFN compared with LCaFN, indicating more oxygen vacancies 
formed after reduction.28, 29 Iodometric titration also confirms 
that the oxygen non-stoichiometry (δ) of the R-LCaFN (0.339) is 
larger than that of LCaFN (0.162). The fine structure of Fe L2,3- 
edge is very effectual to determine the Fe oxidation state due 
to the transition from 2p3/2 and 2p1/2 electrons to unoccupied 
3d orbitals; spectra from the two samples are shown in Figure. 
3(b). The energy difference between the L2 and L3 peaks (ΔEL2–
L3) and their intensity ratios (L3/L2 ratio) are related to the Fe 
oxidation state.30 ΔEL2–L3= EL2–EL3 of LCaFN is 13.25 eV while 
12.75 eV is measured for R-LCaFN and L3/L2 ratios of 6.03 and 
5.95 are measured for LCaFN and R-LCaFN, respectively. The 
lower ΔEL2–L3 and L3/L2 ratio of the reduced sample both 
indicate a reduced valence of Fe and hence higher electron 

 
Figure. 2 SEM images (a) (b), high resolution STEM (c) and EDS-mapping (d) 
of LCaFN; SEM images (e) (f), high resolution STEM (g) and EDS-mapping (h) 
of R-LCaFN. 
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Figure. 3 EELS profiles of LCaFN and R-LCaFN. (a) the O K-edges, (b) the Fe 
L2,3-edges; in situ DRIFTS spectra of CO2 adsorption (c) and reaction (d) of 
different samples. 

 

density of Fe cations in the R-LCaFN.30-32 This is an important 
observation since oxygen vacancies and electron density play 
significant roles in CO2 electroreduction.33  

To investigate the adsorption performance of CaO and the 

catalytic effect of Fe-Ni alloy toward CO2, in situ DRIFTS was used to 

characterize the CO2 adsorption and reaction of LaFe0.8Ni0.2O3 (LFN), 

R-LFN, LCaFN and R-LCaFN. Infrared scans for all the samples with 

CO2 adsorption at room temperature display absorbance signals in 

two different infrared bands, shown in Figure. 3(c) and (d). 

Specifically, the infrared band of 2380-2300 cm-1 is involved in CO2 

molecules on the sample surface, and 1450-1380 cm-1 is typically 

associated with CO3
2-.34, 35 The peak upward represents CO2 

accumulation and the downward represents CO2 consumption. It can 

be observed that the intensity of the CO2 peak becomes weaker after 

Ca doping and reduction, demonstrating a strong interaction of CO2 

with the sample, forming carbonate which in turn causes the 

intensity of the CO3
2- peak to increase gradually. These results 

indicate that R-LCaFN has significantly improved adsorption 

performance and catalytic activity compared to its as-prepared (not 

reduced) and LFN analogues. 

I-V curves of two cells for pure CO2 electrolysis at 800 °C are 

shown in Figure. 4(a). There exists a nonlinear relationship of the 

curve in the low voltage range, owing to the electrodes activation at 

the low current density.36 It should be noted that the performance of 

R-LCaFN cell is considerably greater than that of the LCaFN cell, 

indicating the high catalytic activity of the R-LCaFN electrode. At 1.3 

V, the LCaFN cell achieves current densities of 0.32 A/cm2, whereas 

the R-LCaFN cell exhibits current densities of 0.632 A/cm2, a 

remarkable 94% increase compared to the LCaFN cell. Crucially, this 

value is much higher than comparable systems with Pd single site-

anchored La0.5Sr0.5FeO3-δ-Ce0.8Sm0.2O2-δ (0.58 A/cm2),37 

(Pr,Ba)2Mn2−yFeyO5+δ (0.32 A/cm2),16 La0.5Sr0.5Fe1-xVxO3-δ (0.43 

A/cm2)17 and Sr2Fe1.5Mo0.5O6-δ (0.6 A/cm2).38 

The electrochemical performance of R-LCaFN cell at different 
temperatures is shown in Figure. S7. EIS of two cells are test at  

 
Figure. 4 I-V curves of SSOECs with LCaFN and R-LCaFN electrode for CO2 
electrolysis at 800 °C (a), EIS (b), DRT plots (c) and stability test (d) of two 
cells at 1.3 V and 800 °C. 

800 °C under 1.3 V as shown in Figure. 4(b). Two cells have 
similar ohmic resistance (Rs) because of the identical 
electrolytes and anodes. The cell with the R-LCaFN electrode 
shows a much lower polarization resistance (Rp) than that with 
the LCaFN electrode both in OCV and working condition (Figure. 
S8). The Rp value of the R-LCaFN cell is 0.399 Ω·cm2 at 1.3 V, 
only 60.3% of that of the cell with the LCaFN cathode (0.662 
Ω·cm2). Distribution of relaxation time (DRT) method is used to 
analyze the multiple electrode processes and the DRT results of 
the two cells are illustrated in Figure. 4(c). There are five peaks 
representing five electrochemical processes from high 
frequency to low frequency. That is, OER at the anode (P1), ion 
transport through the electrolyte (P2), the transfer of O2- at 
cathode (P3), the CO2 adsorption (P4) and electrochemical 
reduction (P5) processes.32, 39, 40 The area of five peaks 
represents the Rp of a specific process and the fitting results 
simulated by an equivalent circuit model (Figure. 4(b)) are 
summarized in Table S1. It is noteworthy that the lower peaks 
P4 and P5 demonstrate that both CO2 adsorption and 
electrochemical reduction ability are enhanced via the in situ 
reduction process. CaO can effectively improve the adsorption 
performance of CO2 and then the adsorbed CO2 is efficiently 
electrolyzed by exsolved FeNi3 nanoparticles. Attributed to the 
synergistic effect of nanoparticle and CaO in R-LCaFN cathode, 
the CO2RR performance has a great improvement. The stability 
of the two cells is evaluated at 800 °C under 1.3 V as shown in 
Figure. 4(d). The R-LCaFN cell achieves a higher current density 
and stable performance during the entire 12 h run. 
Furthermore, the R-LCaFN cell still possesses the stable cell 
structure after test as shown in Figure. S9-10.  

3. Conclusions 

In summary, we propose a novel electrode with calcium oxide-
looping and in situ exsolved Ni-Fe nanoparticles by one-step 
reduction of La0.6Ca0.4Fe0.8Ni0.2O3-δ (LCaFN). The cell with this 
special cathode shows current density of 0.632 A/cm2 under 1.3 
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V at 800 °C for CO2 electrolysis, lower polarization resistance 
(0.399 Ω·cm2) and good stability. The synergistic effect of CaO 
and Ni-Fe nanocatalysts for the CO2RR is clearly illustrated by 
the significant performance enhancement relative to as-
prepared (not reduced with no nanocatalysts) and LFN 
analogues. This novel electrode therefore provides a promising 
strategy for CO2 electrolysis. 
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