Files in this item
Growth rates for subclasses of Av(321)
Item metadata
dc.contributor.author | Albert, M.H. | |
dc.contributor.author | Atkinson, M.D. | |
dc.contributor.author | Brignall, R | |
dc.contributor.author | Ruskuc, Nik | |
dc.contributor.author | Smith, R | |
dc.contributor.author | West, J | |
dc.date.accessioned | 2011-12-23T13:08:41Z | |
dc.date.available | 2011-12-23T13:08:41Z | |
dc.date.issued | 2010-10-22 | |
dc.identifier | 5162387 | |
dc.identifier | abfae055-4852-434d-9b3d-19bb2ab2c87d | |
dc.identifier | 78149431471 | |
dc.identifier.citation | Albert , M H , Atkinson , M D , Brignall , R , Ruskuc , N , Smith , R & West , J 2010 , ' Growth rates for subclasses of Av(321) ' , Electronic Journal of Combinatorics , vol. 17 , no. 1 , R141 . | en |
dc.identifier.issn | 1097-1440 | |
dc.identifier.other | ORCID: /0000-0003-2415-9334/work/73702023 | |
dc.identifier.uri | https://hdl.handle.net/10023/2137 | |
dc.description.abstract | Pattern classes which avoid 321 and other patterns are shown to have the same growth rates as similar (but strictly larger) classes obtained by adding articulation points to any or all of the other patterns. The method of proof is to show that the elements of the latter classes can be represented as bounded merges of elements of the original class, and that the bounded merge construction does not change growth rates. | |
dc.format.extent | 16 | |
dc.format.extent | 202037 | |
dc.language.iso | eng | |
dc.relation.ispartof | Electronic Journal of Combinatorics | en |
dc.rights | (c) The authors. Published in the Electronic Journal of Combinatorics at http://www.combinatorics.org/ | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | Growth rates for subclasses of Av(321) | en |
dc.type | Journal article | en |
dc.contributor.institution | University of St Andrews.Pure Mathematics | en |
dc.contributor.institution | University of St Andrews.Centre for Interdisciplinary Research in Computational Algebra | en |
dc.description.status | Peer reviewed | en |
dc.identifier.url | http://www.combinatorics.org/Volume_17/v17i1toc.html | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.