Files in this item
Generators and relations for subsemigroups via boundaries in Cayley graphs
Item metadata
dc.contributor.author | Gray, R | |
dc.contributor.author | Ruskuc, Nik | |
dc.date.accessioned | 2011-12-23T11:08:36Z | |
dc.date.available | 2011-12-23T11:08:36Z | |
dc.date.issued | 2011-11 | |
dc.identifier | 5158279 | |
dc.identifier | ab2695c1-8bc5-44a7-9e4f-a46efd512876 | |
dc.identifier | 79956008214 | |
dc.identifier.citation | Gray , R & Ruskuc , N 2011 , ' Generators and relations for subsemigroups via boundaries in Cayley graphs ' , Journal of Pure and Applied Algebra , vol. 215 , no. 11 , pp. 2761-2779 . https://doi.org/10.1016/j.jpaa.2011.03.017 | en |
dc.identifier.issn | 0022-4049 | |
dc.identifier.other | ORCID: /0000-0003-2415-9334/work/73702072 | |
dc.identifier.uri | https://hdl.handle.net/10023/2131 | |
dc.description.abstract | Given a finitely generated semigroup S and subsemigroup T of S we define the notion of the boundary of T in S which, intuitively, describes the position of T inside the left and right Cayley graphs of S. We prove that if S is finitely generated and T has a finite boundary in S then T is finitely generated. We also prove that if S is finitely presented and T has a finite boundary in S then T is finitely presented. Several corollaries and examples are given. | |
dc.format.extent | 490278 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Pure and Applied Algebra | en |
dc.rights | This is an author version of this article. The definitive version (c) 2011 Elsevier B.V. is available from www.sciencedirect.com | en |
dc.subject | Semigroup | en |
dc.subject | Generators | en |
dc.subject | Presentations | en |
dc.subject | Cayley graph | en |
dc.subject | Subsemigroup | en |
dc.subject | Reidemeister-Schreier rewriting | en |
dc.subject | QA Mathematics | en |
dc.subject.lcc | QA | en |
dc.title | Generators and relations for subsemigroups via boundaries in Cayley graphs | en |
dc.type | Journal article | en |
dc.contributor.sponsor | EPSRC | en |
dc.contributor.sponsor | EPSRC | en |
dc.contributor.sponsor | EPSRC | en |
dc.contributor.institution | University of St Andrews.Pure Mathematics | en |
dc.contributor.institution | University of St Andrews.Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | 10.1016/j.jpaa.2011.03.017 | |
dc.description.status | Peer reviewed | en |
dc.identifier.grantnumber | EP/C523229/1 | en |
dc.identifier.grantnumber | EP/E043194/1 | en |
dc.identifier.grantnumber | EP/H011978/1 | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.