St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anthropogenic disturbance in a changing environment : modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population

Thumbnail
View/Open
Pirotta_2019_Oikos_Anthropogenic_CC.pdf (3.667Mb)
Date
09/2019
Author
Pirotta, Enrico
Mangel, Marc
Costa, Daniel P.
Goldbogen, Jeremy
Harwood, John
Hin, Vincent
Irvine, Ladd M.
Mate, Bruce R.
McHuron, Elizabeth A.
Palacios, Daniel M.
Schwarz, Lisa K.
New, Leslie
Keywords
Climate change
Dynamic state variable modelling
Marine mammals
Population consequences of disturbance
Synergistic effects
Vital rates
GE Environmental Sciences
QH301 Biology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Animals make behavioural and reproductive decisions that maximise their lifetime reproductive success, and thus their fitness, in light of periodic and stochastic variability of the environment. Modelling the variation of an individual's energy levels formalises this tradeoff and helps to quantify the population‐level consequences of stressors (e.g. disturbance from human activities and environmental change) that can affect behaviour or physiology. In this study, we develop a dynamic state variable model for the spatially explicit behaviour, physiology and reproduction of a female, long‐lived, migratory marine vertebrate. The model can be used to investigate the spatio‐temporal patterns of behaviour and reproduction that allow an individual to maximise its overall reproductive output. We parametrised the model for eastern North Pacific blue whales Balaenoptera musculus, and used it to predict the effects of changing environmental conditions and increasing human disturbance on the population's vital rates. In baseline conditions, the model output had high fidelity to observed energy dynamics, movement patterns and reproductive strategies. Simulated scenarios suggested that environmental changes could have severe consequences on the population's vital rates, but that individuals could tolerate high levels of anthropogenic disturbance. However, this ability depended on where, when and how often disturbance occurred. In scenarios with both environmental change and anthropogenic disturbance, synergistic interactions caused stronger effects than in isolation. In general, larger body size offered a buffer against stochasticity and disturbance, and, consequently, we predicted juveniles to be more susceptible to disturbance. We also predicted that females prioritise their own survival at the expense of the current reproductive attempt, presumably the result of their long lifespan. Our approach provides a general framework to make predictions of the cumulative and synergistic effects of human disturbance and climate change on migratory populations, which can inform effective management and conservation efforts.
Citation
Pirotta , E , Mangel , M , Costa , D P , Goldbogen , J , Harwood , J , Hin , V , Irvine , L M , Mate , B R , McHuron , E A , Palacios , D M , Schwarz , L K & New , L 2019 , ' Anthropogenic disturbance in a changing environment : modelling lifetime reproductive success to predict the consequences of multiple stressors on a migratory population ' , Oikos , vol. 128 , no. 9 , pp. 1340-1357 . https://doi.org/10.1111/oik.06146
Publication
Oikos
Status
Peer reviewed
DOI
https://doi.org/10.1111/oik.06146
ISSN
0030-1299
Type
Journal article
Rights
Copyright © 2019 The Authors. Oikos published by John Wiley & Sons Ltd on behalf of Nordic Society Oikos. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Description
This study was supported by Office of Naval Research grant N00014‐16‐1‐2858: ‘PCoD+: Developing widely‐applicable models of the population consequences of disturbance’. DPC, MM, EAM and LKS were supported by the E&P Sound and Marine Life Joint Industry Project of the International Association of Oil and Gas Producers. JAG was supported by funding from the Young Investigator Program at the Office of Naval Research (award no. N00014‐16‐1‐2477). VH was funded by European Research Council Grant No. 322814 awarded to A.M. de Roos.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/18081

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter