St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative proteomics implicates a role for multiple secretion systems in electrode-respiring Geobacter sulfurreducens biofilms

Thumbnail
View/Open
acs.jproteome.5b01019_1_.pdf (1.072Mb)
Date
02/12/2016
Author
Kavanagh, Paul
Botting, Catherine H.
Jana, Partha S.
Leech, Dónal
Abram, Florence
Funder
The Wellcome Trust
Grant ID
094476/Z/10/Z
Keywords
Geobacter sulfurreducens
Electrode biofilm
Proteomics
Electron transfer
Secretion systems
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium capable of forming thick electron-conducting biofilms on solid electrodes. Here, we employ for the first time comparative proteomics to identify key physiological changes involved in G. sulfurreducens adaptation from fumarate-respiring planktonic cells to electron-conducting biofilms. Increased levels of proteins involved in outer membrane biogenesis, cell motility and secretion are expressed in biofilms. Of particular importance to the electron-conducting biofilms are proteins associated with secretion systems of Type I, II, V and Type IV pili. Furthermore, enzymes involved in lipopolysaccharide and peptidoglycan biosynthesis show increased levels of expression in electron-conducting biofilms compared to planktonic cells. These observations point to similarities in long-range electron transfer mechanisms between G. sulfurreducens and Shewanella oneidensis, while highlighting the wider significance of secretion systems beyond that of Type IV pili identified to date in the adaptation of G. sulfurreducens to electrode respiration.
Citation
Kavanagh , P , Botting , C H , Jana , P S , Leech , D & Abram , F 2016 , ' Comparative proteomics implicates a role for multiple secretion systems in electrode-respiring Geobacter sulfurreducens biofilms ' , Journal of Proteome Research , vol. 15 , no. 12 , pp. 4135-4145 . https://doi.org/10.1021/acs.jproteome.5b01019
Publication
Journal of Proteome Research
Status
Peer reviewed
DOI
https://doi.org/10.1021/acs.jproteome.5b01019
Type
Journal article
Rights
Copyright © 2016 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at: https://doi.org/10.1021/acs.jproteome.5b01019
Description
This work was supported by Science Foundation Ireland (Charles Parsons Energy Research Award - 06/CP/E006) and the Wellcome Trust (grant number 094476/Z/10/Z) which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews. The authors thank Matthew A. Fuszard and Sally L. Shirran for their technical assistance with fractionation and mass spectrometry.
Collections
  • University of St Andrews Research
URL
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b01019
URI
http://hdl.handle.net/10023/11829

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter