Show simple item record

Files in this item


Item metadata

dc.contributor.authorKavanagh, Paul
dc.contributor.authorBotting, Catherine H.
dc.contributor.authorJana, Partha S.
dc.contributor.authorLeech, Dónal
dc.contributor.authorAbram, Florence
dc.identifier.citationKavanagh , P , Botting , C H , Jana , P S , Leech , D & Abram , F 2016 , ' Comparative proteomics implicates a role for multiple secretion systems in electrode-respiring Geobacter sulfurreducens biofilms ' , Journal of Proteome Research , vol. 15 , no. 12 , pp. 4135-4145 .
dc.identifier.otherPURE: 247320646
dc.identifier.otherPURE UUID: 3e6b60d1-5f3b-46cd-906b-f29997c54e29
dc.identifier.otherScopus: 85000671324
dc.identifier.otherWOS: 000389396500001
dc.descriptionThis work was supported by Science Foundation Ireland (Charles Parsons Energy Research Award - 06/CP/E006) and the Wellcome Trust (grant number 094476/Z/10/Z) which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews. The authors thank Matthew A. Fuszard and Sally L. Shirran for their technical assistance with fractionation and mass spectrometry.en
dc.description.abstractGeobacter sulfurreducens is a dissimilatory metal-reducing bacterium capable of forming thick electron-conducting biofilms on solid electrodes. Here, we employ for the first time comparative proteomics to identify key physiological changes involved in G. sulfurreducens adaptation from fumarate-respiring planktonic cells to electron-conducting biofilms. Increased levels of proteins involved in outer membrane biogenesis, cell motility and secretion are expressed in biofilms. Of particular importance to the electron-conducting biofilms are proteins associated with secretion systems of Type I, II, V and Type IV pili. Furthermore, enzymes involved in lipopolysaccharide and peptidoglycan biosynthesis show increased levels of expression in electron-conducting biofilms compared to planktonic cells. These observations point to similarities in long-range electron transfer mechanisms between G. sulfurreducens and Shewanella oneidensis, while highlighting the wider significance of secretion systems beyond that of Type IV pili identified to date in the adaptation of G. sulfurreducens to electrode respiration.
dc.relation.ispartofJournal of Proteome Researchen
dc.rightsCopyright © 2016 American Chemical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at:
dc.subjectGeobacter sulfurreducensen
dc.subjectElectrode biofilmen
dc.subjectElectron transferen
dc.subjectSecretion systemsen
dc.subjectQD Chemistryen
dc.titleComparative proteomics implicates a role for multiple secretion systems in electrode-respiring Geobacter sulfurreducens biofilmsen
dc.typeJournal articleen
dc.contributor.sponsorThe Wellcome Trusten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record