St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls

Thumbnail
View/Open
Cairns_2016_AJ_3DPic_FinalPubVersion.pdf (3.625Mb)
Date
18/10/2016
Author
Bamford, R. A.
Alves, E. P.
Cruz, F.
Kellett, B. J.
Fonsesca, R. A.
Silva, L. O.
Trines, R. M. G. M.
Halekas, J. S.
Kamer, G.
Harnett, E.
Cairns, Robert Alan
Bingham, R.
Keywords
Acceleration of particles
Moon
Magnetic fields
Planets and satellites: magnetic fields
Plasmas
Shock waves
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Abstract
Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.
Citation
Bamford , R A , Alves , E P , Cruz , F , Kellett , B J , Fonsesca , R A , Silva , L O , Trines , R M G M , Halekas , J S , Kamer , G , Harnett , E , Cairns , R A & Bingham , R 2016 , ' 3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls ' , Astrophysical Journal , vol. 830 , no. 2 . https://doi.org/10.3847/0004-637X/830/2/146
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.3847/0004-637X/830/2/146
ISSN
0004-637X
Type
Journal article
Rights
© 2016. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://dx.doi.org/10.3847/0004-637X/830/2/146
Description
The authors would like to thank the Science and Technology Facilities Council for fundamental physics and computing resources that were provided by funding from STFC’s Scientific Computing Department, and would like to thank the European Research Council (ERC 2010 AdG Grant 267841) and FCT (Portugal) grants SFRH/BD/75558/2010 for support.
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2016ApJ...830..146B
http://strathprints.strath.ac.uk/id/eprint/59294
URI
http://hdl.handle.net/10023/11067

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter