Show simple item record

Files in this item


Item metadata

dc.contributor.authorBamford, R. A.
dc.contributor.authorAlves, E. P.
dc.contributor.authorCruz, F.
dc.contributor.authorKellett, B. J.
dc.contributor.authorFonsesca, R. A.
dc.contributor.authorSilva, L. O.
dc.contributor.authorTrines, R. M. G. M.
dc.contributor.authorHalekas, J. S.
dc.contributor.authorKamer, G.
dc.contributor.authorHarnett, E.
dc.contributor.authorCairns, Robert Alan
dc.contributor.authorBingham, R.
dc.identifier.citationBamford , R A , Alves , E P , Cruz , F , Kellett , B J , Fonsesca , R A , Silva , L O , Trines , R M G M , Halekas , J S , Kamer , G , Harnett , E , Cairns , R A & Bingham , R 2016 , ' 3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls ' , Astrophysical Journal , vol. 830 , no. 2 .
dc.identifier.otherPURE: 250299191
dc.identifier.otherPURE UUID: 0cfc4674-f71c-4a6c-92b5-d07a65f0c4c1
dc.identifier.otherScopus: 84993971772
dc.identifier.otherWOS: 000400471800013
dc.descriptionThe authors would like to thank the Science and Technology Facilities Council for fundamental physics and computing resources that were provided by funding from STFC’s Scientific Computing Department, and would like to thank the European Research Council (ERC 2010 AdG Grant 267841) and FCT (Portugal) grants SFRH/BD/75558/2010 for support.en
dc.description.abstractInvestigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle-in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the "lunar swirls" and "dark lanes." Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.
dc.relation.ispartofAstrophysical Journalen
dc.rights© 2016. The American Astronomical Society. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at:
dc.subjectAcceleration of particlesen
dc.subjectMagnetic fieldsen
dc.subjectPlanets and satellites: magnetic fieldsen
dc.subjectShock wavesen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.title3D pic simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirlsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record