St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electronic nature of zwitterionic alkali metal methanides, silanides and germanides - a combined experimental and computational approach

Thumbnail
View/Open
Cordes_2016_CS_Zwitterionic_CC.pdf (1.217Mb)
Date
01/02/2017
Author
Li, H.
Aquino, A. J. A.
Cordes, D. B.
Hase, W. L.
Krempner, C.
Keywords
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Zwitterionic group 14 complexes of the alkali metals of formula [C(SiMe2OCH2CH2OMe)3M], (M- 1 ), [Si(SiMe2OCH2CH2OMe)3M], (M- 2 ), [Ge(SiMe2OCH2CH2OMe)3M], (M- 3 ), where M = Li, Na or K, have been prepared, structurally characterized and their electronic nature was investigated by computational methods. Zwitterions M- 2 and M- 3 were synthesized via reactions of [Si(SiMe2OCH2CH2OMe)4] ( 2 ) and [Ge(SiMe2OCH2CH2OMe)4] ( 3 ) with MOBut (M = Li, Na or K), resp., in almost quantitative yields, while M- 1 were prepared from deprotonation of [HC(SiMe2OCH2CH2OMe)3] (1) with LiBut, NaCH2Ph and KCH2Ph, resp. X-ray crystallographic studies and DFT calculations in the gas-phase, including calculations of the NPA charges confirm the zwitterionic nature of these compounds, with the alkali metal cations being rigidly locked and charge separated from the anion by the internal OCH2CH2OMe donor groups. Natural bond orbital (NBO) analysis and the second order perturbation theory analysis of the NBOs reveal significant hyperconjugative interactions in M- 1 -M- 3 , primarily between the lone pair and the antibonding Si-O orbitals, the extent of which decreases in the order M- 1 > M- 2 > M- 3 . The experimental basicities and the calculated gas-phase basicities of M- 1 -M- 3 reveal the zwitterionic alkali metal methanides M- 1 to be significantly stronger bases than the analogous silanides M- 2 and germanium M- 3 .
Citation
Li , H , Aquino , A J A , Cordes , D B , Hase , W L & Krempner , C 2017 , ' Electronic nature of zwitterionic alkali metal methanides, silanides and germanides - a combined experimental and computational approach ' , Chemical Science , vol. 8 , no. 2 , pp. 1316-1328 . https://doi.org/10.1039/C6SC02390H
Publication
Chemical Science
Status
Peer reviewed
DOI
https://doi.org/10.1039/C6SC02390H
ISSN
2041-6520
Type
Journal article
Rights
© 2016 The Authors. Open Access article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Description
This project was funded in part by the NSF (grant no. 1407681; Project SusChEM: IUPAC) as part of the IUPAC International Funding Call on “Novel Molecular and Supramolecular Theory and Synthesis Approaches for Sustainable Catalysis”. Support was also provided by the TTU Department of Chemistry & Biochemistry cluster Robinson whose purchase was funded by the NSF (CRIF-MU CHE-0840493).
Collections
  • Chemistry Research
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9838

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter