St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles

Thumbnail
View/Open
Currie_2016_Deep_brain_PNAS_AAM.pdf (1.043Mb)
Date
24/05/2016
Author
Currie, Stephen Paul
Doherty, Gayle Helane
Sillar, Keith Thomas
Keywords
Photoreception
Locomotion
CPG
Opsin 5
Cytochrome
QH301 Biology
RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
NDAS
BDC
R2C
Metadata
Show full item record
Abstract
Nonvisual photoreceptors are widely distributed in the retina and brain, but their roles in animal behavior remain poorly understood. Here we document a previously unidentified form of deep-brain photoreception in Xenopus laevis frog tadpoles. The isolated nervous system retains sensitivity to light even when devoid of input from classical eye and pineal photoreceptors. These preparations produce regular bouts of rhythmic swimming activity in ambient light but fall silent in the dark. This sensitivity is tuned to short-wavelength UV light; illumination at 400 nm initiates motor activity over a broad range of intensities, whereas longer wavelengths do not cause a response. The photosensitive tissue is located in a small region of caudal diencephalon—this region is necessary to retain responses to illumination, whereas its focal illumination is sufficient to drive them. We present evidence for photoreception via the light-sensitive proteins opsin (OPN)5 and/or cryptochrome 1, because populations of OPN5-positive and cryptochrome-positive cells reside within the caudal diencephalon. This discovery represents a hitherto undescribed vertebrate pathway that links luminance detection to motor output. The pathway provides a simple mechanism for light avoidance and/or may reinforce classical circadian systems.
Citation
Currie , S P , Doherty , G H & Sillar , K T 2016 , ' Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles ' , Proceedings of the National Academy of Sciences of the United States of America , vol. 113 , no. 21 , pp. 6053-6058 . https://doi.org/10.1073/pnas.1515516113
Publication
Proceedings of the National Academy of Sciences of the United States of America
Status
Peer reviewed
DOI
https://doi.org/10.1073/pnas.1515516113
ISSN
0027-8424
Type
Journal article
Rights
Copyright © 2016 the Authors. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1073/pnas.1515516113
Description
SPC was supported by a BBSRC studentship.
Collections
  • University of St Andrews Research
URL
https://www.pnas.org/content/suppl/2016/05/09/1515516113.DCSupplemental
URI
http://hdl.handle.net/10023/9803

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter