Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorSlowik, Irma
dc.contributor.authorKronenberg, Nils Michael
dc.contributor.authorFranke, Markus
dc.contributor.authorFischer, Axel
dc.contributor.authorRichter, Andreas
dc.contributor.authorGather, Malte Christian
dc.contributor.authorLeo, Karl
dc.date.accessioned2016-10-27T10:30:19Z
dc.date.available2016-10-27T10:30:19Z
dc.date.issued2016-10-26
dc.identifier.citationSlowik , I , Kronenberg , N M , Franke , M , Fischer , A , Richter , A , Gather , M C & Leo , K 2016 , ' Elastomer based electrically tunable, optical microcavities ' , Applied Physics Letters , vol. 109 , no. 17 , 171104 . https://doi.org/10.1063/1.4966549en
dc.identifier.issn0003-6951
dc.identifier.otherPURE: 246954108
dc.identifier.otherPURE UUID: 8da3f7cc-66aa-45f4-9e01-b49fc0127305
dc.identifier.otherScopus: 84993967666
dc.identifier.otherORCID: /0000-0002-4857-5562/work/47136477
dc.identifier.otherWOS: 000387258300004
dc.identifier.urihttps://hdl.handle.net/10023/9712
dc.descriptionThis work is supported in part by the German Research Foundation (DFG) within the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) and by the European Social Fund via the OrganoMechanics project. M.C.G. and N.M.K acknowledge support by the Scottish Funding Council (via SUPA) and the Human Frontier Science Program (RG0074/2013).en
dc.description.abstractTunable optical elements are mostly realized by microelectromechanical systems, which require expensive and complex lithography during processing. We demonstrate an alternative device based on an electrically tunable microcavity employing a dielectric soft elastomer actuator. The cavity resonance is varied by changing the physical cavity thickness due to electrostriction of the soft elastomer. We realize a tunable metal-elastomerDBR multi-half wavelength microcavity with a cavity layer thickness around 12 µm and quality factors up to 700. Applying a voltage up to 60 V between bottom ITO and top metal electrode tunes the wavelength of the cavity modes up to ∆λ = 14 nm, which relates to a cavity thickness change of about 200 nm. This concept allows the implementation of tunable optical elements like tunable filters or resonators with low cost and simple processing.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofApplied Physics Lettersen
dc.rights© 2016, the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at scitation.aip.org / http://dx.doi.org/10.1063/1.4966549en
dc.subjectQC Physicsen
dc.subjectTK Electrical engineering. Electronics Nuclear engineeringen
dc.subjectNDASen
dc.subject.lccQCen
dc.subject.lccTKen
dc.titleElastomer based electrically tunable, optical microcavitiesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1063/1.4966549
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record