Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorSotelo, J.
dc.contributor.authorWoodall, C.H.
dc.contributor.authorAllan, D.R.
dc.contributor.authorGregoryanz, E.
dc.contributor.authorHowie, R.T.
dc.contributor.authorKamenev, K.V.
dc.contributor.authorProbert, M.R.
dc.contributor.authorWright, Paul Anthony
dc.contributor.authorMoggach, S.A.
dc.date.accessioned2016-09-11T23:34:26Z
dc.date.available2016-09-11T23:34:26Z
dc.date.issued2015-11-02
dc.identifier.citationSotelo , J , Woodall , C H , Allan , D R , Gregoryanz , E , Howie , R T , Kamenev , K V , Probert , M R , Wright , P A & Moggach , S A 2015 , ' Locating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressures ' , Angewandte Chemie International Edition , vol. 54 , no. 45 , pp. 13332-13336 . https://doi.org/10.1002/anie.201506250en
dc.identifier.issn1433-7851
dc.identifier.otherPURE: 233950736
dc.identifier.otherPURE UUID: 373ce148-7067-4a63-87f8-c8002c29da41
dc.identifier.otherScopus: 84945480066
dc.identifier.otherWOS: 000363691500031
dc.identifier.otherORCID: /0000-0002-4243-9957/work/62668271
dc.identifier.urihttps://hdl.handle.net/10023/9471
dc.descriptionThe authors thank the EPSRC for funding (EP/K033646) and the STFC for awarding beamtime at the Diamond Light Source.en
dc.description.abstractAn alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework ScBDC with liquefied CO at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH at 3-25 kbar demonstrates hyperfilling of the ScBDC and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. The maximum gas uptake of porous MOFs was explored by using gases as pressure-transmitting media in high-pressure single-crystal diffraction experiments. A study with supercritical CH at 3-25 kbar demonstrates that two high-pressure phase transitions are induced as the filled MOF adapts to reduce the volume of the system.
dc.format.extent5
dc.language.isoeng
dc.relation.ispartofAngewandte Chemie International Editionen
dc.rights© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1002/anie.201506250en
dc.subjectGas separationen
dc.subjectHigh-pressure phasesen
dc.subjectMetal–organic frameworksen
dc.subjectStructural scienceen
dc.subjectX-ray crystallographyen
dc.subjectQD Chemistryen
dc.subjectDASen
dc.subject.lccQDen
dc.titleLocating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressuresen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1002/anie.201506250
dc.description.statusPeer revieweden
dc.date.embargoedUntil2016-09-11


This item appears in the following Collection(s)

Show simple item record