St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Locating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressures

Thumbnail
View/Open
Wright_2015_PorousMaterials_ACIE_AM.pdf (625.1Kb)
Date
02/11/2015
Author
Sotelo, J.
Woodall, C.H.
Allan, D.R.
Gregoryanz, E.
Howie, R.T.
Kamenev, K.V.
Probert, M.R.
Wright, Paul Anthony
Moggach, S.A.
Keywords
Gas separation
High-pressure phases
Metal–organic frameworks
Structural science
X-ray crystallography
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework ScBDC with liquefied CO at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH at 3-25 kbar demonstrates hyperfilling of the ScBDC and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. The maximum gas uptake of porous MOFs was explored by using gases as pressure-transmitting media in high-pressure single-crystal diffraction experiments. A study with supercritical CH at 3-25 kbar demonstrates that two high-pressure phase transitions are induced as the filled MOF adapts to reduce the volume of the system.
Citation
Sotelo , J , Woodall , C H , Allan , D R , Gregoryanz , E , Howie , R T , Kamenev , K V , Probert , M R , Wright , P A & Moggach , S A 2015 , ' Locating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressures ' , Angewandte Chemie International Edition , vol. 54 , no. 45 , pp. 13332-13336 . https://doi.org/10.1002/anie.201506250
Publication
Angewandte Chemie International Edition
Status
Peer reviewed
DOI
https://doi.org/10.1002/anie.201506250
ISSN
1433-7851
Type
Journal article
Rights
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1002/anie.201506250
Description
The authors thank the EPSRC for funding (EP/K033646) and the STFC for awarding beamtime at the Diamond Light Source.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9471

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter