Locating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressures
Date
02/11/2015Author
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework ScBDC with liquefied CO at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH at 3-25 kbar demonstrates hyperfilling of the ScBDC and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. The maximum gas uptake of porous MOFs was explored by using gases as pressure-transmitting media in high-pressure single-crystal diffraction experiments. A study with supercritical CH at 3-25 kbar demonstrates that two high-pressure phase transitions are induced as the filled MOF adapts to reduce the volume of the system.
Citation
Sotelo , J , Woodall , C H , Allan , D R , Gregoryanz , E , Howie , R T , Kamenev , K V , Probert , M R , Wright , P A & Moggach , S A 2015 , ' Locating gases in porous materials : cryogenic loading of fuel-related gases into a Sc-based metal-organic framework under extreme pressures ' , Angewandte Chemie International Edition , vol. 54 , no. 45 , pp. 13332-13336 . https://doi.org/10.1002/anie.201506250
Publication
Angewandte Chemie International Edition
Status
Peer reviewed
ISSN
1433-7851Type
Journal article
Rights
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1002/anie.201506250
Description
The authors thank the EPSRC for funding (EP/K033646) and the STFC for awarding beamtime at the Diamond Light Source.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.