Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorMrowiński, P.
dc.contributor.authorZieliński, M.
dc.contributor.authorŚwiderski, M.
dc.contributor.authorMisiewicz, J.
dc.contributor.authorSomers, A.
dc.contributor.authorReithmaier, J. P.
dc.contributor.authorHöfling, Sven
dc.contributor.authorSęk, G.
dc.date.accessioned2016-09-02T16:30:08Z
dc.date.available2016-09-02T16:30:08Z
dc.date.issued2016-09-26
dc.identifier.citationMrowiński , P , Zieliński , M , Świderski , M , Misiewicz , J , Somers , A , Reithmaier , J P , Höfling , S & Sęk , G 2016 , ' Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes ' , Physical Review. B, Condensed matter and materials physics , vol. 94 , no. 11 , 115434 . https://doi.org/10.1103/PhysRevB.94.115434en
dc.identifier.issn1098-0121
dc.identifier.otherPURE: 245527746
dc.identifier.otherPURE UUID: ce7f3be4-e72c-4e77-a073-ee293a0a07f2
dc.identifier.otherScopus: 84990966935
dc.identifier.otherWOS: 000384065700008
dc.identifier.urihttps://hdl.handle.net/10023/9423
dc.descriptionP.M., J.M. and G. S. acknowledge support from the grant of National Science Centre of Poland No. 2011/02/A/ST3/00152 (Maestro), whereas M.Z. acknowledges support from the Polish National Science Centre under grant No. 2015/18/E/ST3/005 (Sonata Bis). The experiments have partially been performed within the Wroclaw University of Science and Technology laboratory infrastructure financed by the Polish Ministry of Science and Higher Education Grant No. 6167/IA/119/2012.en
dc.description.abstractThe fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this work we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures including quantum dash size variation and composition fluctuations.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofPhysical Review. B, Condensed matter and materials physicsen
dc.rights© 2016, American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevB.94.115434en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleExcitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashesen
dc.typeJournal articleen
dc.description.versionPostprinten
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.94.115434
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record