St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes

Thumbnail
View/Open
Hoefling_2016_PRB_ExcitonicFineStructure_AM.pdf (929.0Kb)
Date
26/09/2016
Author
Mrowiński, P.
Zieliński, M.
Świderski, M.
Misiewicz, J.
Somers, A.
Reithmaier, J. P.
Höfling, Sven
Sęk, G.
Keywords
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this work we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures including quantum dash size variation and composition fluctuations.
Citation
Mrowiński , P , Zieliński , M , Świderski , M , Misiewicz , J , Somers , A , Reithmaier , J P , Höfling , S & Sęk , G 2016 , ' Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes ' , Physical Review. B, Condensed matter and materials physics , vol. 94 , no. 11 , 115434 . https://doi.org/10.1103/PhysRevB.94.115434
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.94.115434
ISSN
1098-0121
Type
Journal article
Rights
© 2016, American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1103/PhysRevB.94.115434
Description
P.M., J.M. and G. S. acknowledge support from the grant of National Science Centre of Poland No. 2011/02/A/ST3/00152 (Maestro), whereas M.Z. acknowledges support from the Polish National Science Centre under grant No. 2015/18/E/ST3/005 (Sonata Bis). The experiments have partially been performed within the Wroclaw University of Science and Technology laboratory infrastructure financed by the Polish Ministry of Science and Higher Education Grant No. 6167/IA/119/2012.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9423

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter