St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins

Thumbnail
View/Open
Handing_2016_Zinc_ChemSci_CC.pdf (1.473Mb)
Date
01/11/2016
Author
Handing, Katarzyna B.
Shabalin, Ivan G
Kassaar, Omar
Khazaipoul, Siavash
Blindauer, Claudia A
Stewart, Alan James
Chruszcz, Maksymilian
Minor, Wladek
Funder
British Heart Foundation
BBSRC
Grant ID
PG/15/9/31270
BB/J006467/1
Keywords
RC Internal medicine
QD Chemistry
QH301 Biology
NDAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Zinc is an essential nutrient in the body; it is required for the catalytic activity of many hundreds of human enzymes and virtually all biological processes, therefore its homeostasis and trafficking is of crucial interest. Serum albumin is the major carrier of Zn2+ in the blood and is required for its systemic distribution. Here we present the first crystal structures of human serum albumin (HSA) and equine serum albumin (ESA) in complex with Zn2+. The structures allow unambiguous identification of the major zinc binding site on these two albumins, as well as several further, weaker zinc binding sites. The major site in both HSA and ESA has tetrahedral geometry and comprises three protein ligands from the sidechains of His67, His247 and Asp249 and a water molecule. Isothermal titration calorimetric studies of a HSA H67A mutant confirm this to be the highest affinity Zn2+ site. Furthermore, analysis of Zn2+ binding to HSA and ESA proved the presence of secondary sites with 20-50-fold weaker affinities, which may become of importance under particular physiological conditions. Both calorimetry and crystallography suggest that ESA possesses an additional site compared to HSA, involving Glu153, His157 and His288. The His157 residue is replaced by Phe in HSA, incapable of metal coordination. Collectively, these findings are critical to our understanding of the role serum albumin plays in circulatory Zn2+ handling and cellular delivery.
Citation
Handing , K B , Shabalin , I G , Kassaar , O , Khazaipoul , S , Blindauer , C A , Stewart , A J , Chruszcz , M & Minor , W 2016 , ' Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins ' , Chemical Science , vol. 7 , no. 11 , pp. 6635-6648 . https://doi.org/10.1039/C6SC02267G
Publication
Chemical Science
Status
Peer reviewed
DOI
https://doi.org/10.1039/C6SC02267G
ISSN
2041-6520
Type
Journal article
Rights
This journal is © The Royal Society of Chemistry 2016. Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Description
The work described here was supported by NIH grants 1R01GM117325-01, 5U54GM094662-05 and R01GM053163, BBSRC grant BB/J006467/1 and British Heart Foundation grant PG/15/9/31270.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9406

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter