St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

An exhaustive symmetry approach to structure determination: phase transitions in Bi2Sn2O7

Thumbnail
View/Open
Payne_2016_JACS_Exhaustive_CCBY_FinalPublishedVersion.pdf (4.304Mb)
Date
29/06/2016
Author
Lewis, James W.
Payne, Julia L.
Evans, Ivana Radosavljevic
Stokes, Harold T.
Campbell, Branton J.
Evans, John S. O.
Keywords
QD Chemistry
Chemistry(all)
Catalysis
Biochemistry
Colloid and Surface Chemistry
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The exploitable properties of many materials are intimately linked to symmetry-lowering structural phase transitions. We present an automated and exhaustive symmetry-mode method for systematically exploring and solving such structures which will be widely applicable to a range of functional materials. We exemplify the method with an investigation of the Bi2Sn2O7 pyrochlore, which has been shown to undergo transitions from a parent γ cubic phase to β and α structures on cooling. The results include the first reliable structural model for β-Bi2Sn2O7 (orthorhombic Aba2, a = 7.571833(8), b = 21.41262(2), and c = 15.132459(14) Å) and a much simpler description of α-Bi2Sn2O7 (monoclinic Cc, a = 13.15493(6), b = 7.54118(4), and c = 15.07672(7) Å, β = 125.0120(3)°) than has been presented previously. We use the symmetry-mode basis to describe the phase transition in terms of coupled rotations of the Bi2O′ anti-cristobalite framework, which allow Bi atoms to adopt low-symmetry coordination environments favored by lone-pair cations.
Citation
Lewis , J W , Payne , J L , Evans , I R , Stokes , H T , Campbell , B J & Evans , J S O 2016 , ' An exhaustive symmetry approach to structure determination: phase transitions in Bi2Sn2O7 ' , Journal of the American Chemical Society , vol. 138 , no. 25 , pp. 8031-8042 . https://doi.org/10.1021/jacs.6b04947
Publication
Journal of the American Chemical Society
Status
Peer reviewed
DOI
https://doi.org/10.1021/jacs.6b04947
ISSN
0002-7863
Type
Journal article
Rights
Copyright © 2016 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Description
B.J.C. would like to acknowledge the US-UK Fulbright commission for a research fellowship and the University of Durham for hosting his research leave. J.W.L. would like to thank the EPSRC for a Ph.D. scholarship.
Collections
  • University of St Andrews Research
URL
http://pubs.acs.org/doi/suppl/10.1021/jacs.6b04947
URI
http://hdl.handle.net/10023/9292

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter