St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device

Thumbnail
View/Open
2016_IJCNN_paper1.pdf (1.483Mb)
Date
03/11/2016
Author
Rieutort-Louis, Warren
Arandelovic, Ognjen
Keywords
QA75 Electronic computers. Computer science
3rd-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Visual recognition and vision based retrieval of objects from large databases are tasks with a wide spectrum of potential applications. In this paper we propose a novel recognition method from video sequences suitable for retrieval from databases acquired in highly unconstrained conditions e.g. using a mobile consumer-level device such as a phone. On the lowest level, we represent each sequence as a 3D mesh of densely packed local appearance descriptors. While image plane geometry is captured implicitly by a large overlap of neighbouring regions from which the descriptors are extracted, 3D information is extracted by means of a descriptor transition table, learnt from a single sequence for each known gallery object. These allow us to connect local descriptors along the 3rd dimension (which corresponds to viewpoint changes), thus resulting in a set of variable length Markov chains for each video. The matching of two sets of such chains is formulated as a statistical hypothesis test, whereby a subset of each is chosen to maximize the likelihood that the corresponding video sequences show the same object. The effectiveness of the proposed algorithm is empirically evaluated on the Amsterdam Library of Object Images and a new highly challenging video data set acquired using a mobile phone. On both data sets our method is shown to be successful in recognition in the presence of background clutter and large viewpoint changes.
Citation
Rieutort-Louis , W & Arandelovic , O 2016 , Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device . in 2016 International Joint Conference on Neural Networks (IJCNN) . , 7727584 , IEEE , pp. 3030-3037 , IEEE World Congress on Computational Intelligence , Vancouver , Canada , 24/07/16 . https://doi.org/10.1109/IJCNN.2016.7727584
 
conference
 
Publication
2016 International Joint Conference on Neural Networks (IJCNN)
DOI
https://doi.org/10.1109/IJCNN.2016.7727584
Type
Conference item
Rights
© 2016, IEEE. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at ieeexplore.ieee.org / https://dx.doi.org/10.1109/IJCNN.2016.7727584
Collections
  • Computer Science Research
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/9201

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter