Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorAndrovitsaneas, P.
dc.contributor.authorYoung, A. B.
dc.contributor.authorSchneider, C.
dc.contributor.authorMaier, S.
dc.contributor.authorKamp, M.
dc.contributor.authorHöfling, S.
dc.contributor.authorKnauer, S.
dc.contributor.authorHarbord, E.
dc.contributor.authorHu, C. Y.
dc.contributor.authorRarity, J. G.
dc.contributor.authorOulton, R.
dc.date.accessioned2016-07-05T16:30:12Z
dc.date.available2016-07-05T16:30:12Z
dc.date.issued2016-06-21
dc.identifier.citationAndrovitsaneas , P , Young , A B , Schneider , C , Maier , S , Kamp , M , Höfling , S , Knauer , S , Harbord , E , Hu , C Y , Rarity , J G & Oulton , R 2016 , ' Charged quantum dot micropillar system for deterministic light-matter interactions ' , Physical Review. B, Condensed matter and materials physics , vol. 93 , 241409 . https://doi.org/10.1103/PhysRevB.93.241409en
dc.identifier.issn1098-0121
dc.identifier.otherPURE: 244115917
dc.identifier.otherPURE UUID: eacc4703-5832-4b4b-95dd-deb5962a2c67
dc.identifier.otherBibtex: urn:00506fc217677de5e025c75991bc0ba5
dc.identifier.otherScopus: 84976871281
dc.identifier.otherWOS: 000378107100008
dc.identifier.urihttps://hdl.handle.net/10023/9078
dc.descriptionThis work was funded by the Future Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, FET-Open, FP7-284743 [project Spin Photon Angular Momentum Transfer for Quantum Enabled Technologies (SPANGL4Q)] and the German Ministry of Education and research (BMBF) and Engineering and Physical Sciences Research Council (EPSRC) [project Solid State Quantum Networks (SSQN)]. J.G.R. is sponsored by the EPSRC fellowship EP/M024458/1.en
dc.description.abstractQuantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (∼6∘) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q∼290) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q-factor design would enable near-deterministic light-matter interactions.
dc.language.isoeng
dc.relation.ispartofPhysical Review. B, Condensed matter and materials physicsen
dc.rights© 2016 American Physical Society. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1103/PhysRevB.93.241409en
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQCen
dc.titleCharged quantum dot micropillar system for deterministic light-matter interactionsen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.identifier.doihttps://doi.org/10.1103/PhysRevB.93.241409
dc.description.statusPeer revieweden
dc.identifier.urlhttp://journals.aps.org/prb/supplemental/10.1103/PhysRevB.93.241409en


This item appears in the following Collection(s)

Show simple item record