hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress
Date
08/06/2016Author
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosylase (hOGG1) to damaged DNA. Here we demonstrate that following oxidative stress, hSSB1 is stabilized as an oligomer which is required for hSSB1 to function in the removal of 8-oxoguanine. Monomeric hSSB1 shows a decreased affinity for oxidized DNA resulting in a cellular 8-oxoguanine-repair defect and in the absence of ATM signaling initiation. While hSSB1 oligomerization is important for the removal of 8-oxoguanine from the genome, it is not required for the repair of double-strand DNA-breaks by homologous recombination. These findings demonstrate a novel hSSB1 regulatory mechanism for the repair of damaged DNA.
Citation
Paquet , N , Adams , M N , Ashton , N W , Touma , C , Gamsjaeger , R , Cubeddu , L , Leong , V , Beard , S , Bolderson , E , Botting , C H , O'Byrne , K J & Richard , D J 2016 , ' hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress ' , Scientific Reports , vol. 6 , 27466 . https://doi.org/10.1038/srep27446
Publication
Scientific Reports
Status
Peer reviewed
ISSN
2045-2322Type
Journal article
Rights
Copyright 2016 the Authors. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.