St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Arrays of microscopic organic LEDs for high resolution optogenetics

Thumbnail
View/Open
Steude_2016_ArraysMicroscope_SciAdv_CC.pdf (1.091Mb)
Date
06/05/2016
Author
Steude, Anja
Witts, Emily Charlotte
Miles, Gareth Brian
Gather, Malte Christian
Funder
Human Frontiers Science Programme
Grant ID
RGY0074/2013
Keywords
OLED
Optogenetics
Microdisplays
Organic electronics
Neuroscience
Channelrhodopsin
RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
QC Physics
T Technology
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Optogenetics is a paradigm changing new method to study and manipulate the behavior of cells with light. Following major advances of the used genetic constructs over the last decade, the light sources required for optogenetic control are now receiving increased attention. Here, we report on a novel optogenetic illumination platform based on high density arrays of microscopic organic light emitting diodes (OLEDs). Due to the small dimensions of each array element (6x9 µm²) and the use of ultra-thin device encapsulation, these arrays enable illumination of cells with unprecedented spatiotemporal resolution. We show that adherent eukaryotic cells readily proliferate on these arrays and we demonstrate specific light-induced control of the ionic current across the membrane of individual live cells expressing different optogenetic constructs. Our work paves the way for the use of OLEDs for cell-specific optogenetic control in cultured neuronal networks, acute brain slices or as implants in vivo.
Citation
Steude , A , Witts , E C , Miles , G B & Gather , M C 2016 , ' Arrays of microscopic organic LEDs for high resolution optogenetics ' , Science Advances , vol. 2 , no. 5 , e1600061 . https://doi.org/10.1126/sciadv.1600061
Publication
Science Advances
Status
Peer reviewed
DOI
https://doi.org/10.1126/sciadv.1600061
ISSN
2375-2548
Type
Journal article
Rights
Copyright © 2016, The Authors This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
Description
We thank A. Morton and C. Murawski (both University of St Andrews) and B.Richter (Fraunhofer FEP, Dresden) for fruitful discussions. HEK-293 cells that were stably transfected with ChR2-H134R-EYFP DNA were provided by M. Antkowiak and F. J. Gunn-Moore (both University of St Andrews). Funding: This work was supported by the Scottish Funding Council (via Scottish Universities Physics Alliance), the Human Frontier Science Program (RGY0074/2013), and the RS Macdonald Charitable Trust. Author contributions: A.S. performed the optogenetics experiments and data analysis. E.C.W. and G.B.M. carried out the patch clamp measurements. M.C.G. conceived and supervised the project. A.S. and M.C.G. jointly wrote the manuscript with input from all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper. The research data supporting this publication can be accessed at DOI 10.17630/d758df2c-78ee-482c-ae7f-af37b00fdb52. Additional data related to this paper are available upon request from M.C.G. (mcg6@st-andrews.ac.uk).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8772

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter