St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-P energy currency molecules

Thumbnail
View/Open
Cousins_2016_Life_Phosphate_CCBY_FinalPublishedVersion.pdf (901.0Kb)
Date
19/07/2013
Author
Kee, Terence
Bryant, David
Herschy, Barry
Marriott, Katie
Cosgrove, Nichola
Pasek, Matthew
Atlas, Zachary
Cousins, Claire Rachel
Keywords
Phosphorus
Prebiotic chemistry
Origin of life
Meteorites
QH301 Biology
GE Environmental Sciences
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The emergence of mechanisms for phosphorylating organic and inorganic molecules is a key step en route to the earliest living systems. At the heart of all contemporary biochemical systems reside reactive phosphorus (P) molecules (such as adenosine triphosphate, ATP) as energy currency molecules to drive endergonic metabolic processes and it has been proposed that a predecessor of such molecules could have been pyrophosphate [P2O74−; PPi(V)]. Arguably the most geologically plausible route to PPi(V) is dehydration of orthophosphate, Pi(V), normally a highly endergonic process in the absence of mechanisms for activating Pi(V). One possible solution to this problem recognizes the presence of reactive-P containing mineral phases, such as schreibersite [(Fe,Ni)3P] within meteorites whose abundance on the early Earth would likely have been significant during a putative Hadean-Archean heavy bombardment. Here, we propose that the reduced oxidation state P-oxyacid, H-phosphite [HPO32−; Pi(III)] could have activated Pi(V) towards condensation via the intermediacy of the condensed oxyacid pyrophosphite [H2P2O52−; PPi(III)]. We provide geologically plausible provenance for PPi(III) along with evidence of its ability to activate Pi(V) towards PPi(V) formation under mild conditions (80 °C) in water.
Citation
Kee , T , Bryant , D , Herschy , B , Marriott , K , Cosgrove , N , Pasek , M , Atlas , Z & Cousins , C R 2013 , ' Phosphate activation via reduced oxidation state phosphorus (P). Mild routes to condensed-P energy currency molecules ' , Life , vol. 3 , no. 3 . https://doi.org/10.3390/life3030386
Publication
Life
Status
Peer reviewed
DOI
https://doi.org/10.3390/life3030386
ISSN
2075-1729
Type
Journal article
Rights
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Description
The authors thank the EPSRC (grant EP/F042558/1), the Leverhulme Trust (grant F07112AA), the STFC and the UK Space Agency (Aurora Fellowship to TPK).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/8757

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter