St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Embeddings into Thompson's group V and coCF groups

Thumbnail
View/Open
Embeddings_into_V_Accepted_Version.pdf (377.5Kb)
Date
10/2016
Author
Bleak, Collin
Matucci, Francesco
Neunhöffer, Max
Keywords
QA Mathematics
T-NDAS
BDC
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
It is shown in Lehnert and Schweitzer (‘The co-word problem for the Higman–Thompson group is context-free’, Bull. London Math. Soc. 39 (2007) 235–241) that R. Thompson's group V is a cocontext-context-free (coCF) group, thus implying that all of its finitely generated subgroups are also coCF groups. Also, Lehnert shows in his thesis that V embeds inside the coCF group QAut(T2,c), which is a group of particular bijections on the vertices of an infinite binary 2-edge-coloured tree, and he conjectures that QAut(T2,c) is a universal coCF group. We show that QAut(T2,c) embeds into V, and thus obtain a new form for Lehnert's conjecture. Following up on these ideas, we begin work to build a representation theory into R. Thompson's group V. In particular, we classify precisely which Baumslag–Solitar groups embed into V.
Citation
Bleak , C , Matucci , F & Neunhöffer , M 2016 , ' Embeddings into Thompson's group V and coCF groups ' , Journal of the London Mathematical Society , vol. 94 , no. 2 , pp. 583-597 . https://doi.org/10.1112/jlms/jdw044
Publication
Journal of the London Mathematical Society
Status
Peer reviewed
DOI
https://doi.org/10.1112/jlms/jdw044
ISSN
0024-6107
Type
Journal article
Rights
© 2016 London Mathematical Society. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at http://jlms.oxfordjournals.org/ https://dx.doi.org/10.1112/jlms/jdw044
Collections
  • University of St Andrews Research
URL
http://arxiv.org/abs/1312.1855
URI
http://hdl.handle.net/10023/8747

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter