Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorWoitke, Peter
dc.contributor.authorMin, M.
dc.contributor.authorPinte, C.
dc.contributor.authorThi, W. -F.
dc.contributor.authorKamp, I.
dc.contributor.authorRab, C.
dc.contributor.authorAnthonioz, F.
dc.contributor.authorAntonellini, S.
dc.contributor.authorBaldovin-Saavedra, C.
dc.contributor.authorCarmona, A.
dc.contributor.authorDominik, C.
dc.contributor.authorDionatos, O.
dc.contributor.authorGreaves, Jane Sophia
dc.contributor.authorGüdel, M.
dc.contributor.authorIlee, John David
dc.contributor.authorLiebhart, A.
dc.contributor.authorMénard, F.
dc.contributor.authorRigon, Laura
dc.contributor.authorWaters, L. B. F. M.
dc.contributor.authorAresu, G.
dc.contributor.authorMeijerink, R.
dc.contributor.authorSpaans, M.
dc.date.accessioned2016-02-08T13:10:11Z
dc.date.available2016-02-08T13:10:11Z
dc.date.issued2016-02
dc.identifier.citationWoitke , P , Min , M , Pinte , C , Thi , W -F , Kamp , I , Rab , C , Anthonioz , F , Antonellini , S , Baldovin-Saavedra , C , Carmona , A , Dominik , C , Dionatos , O , Greaves , J S , Güdel , M , Ilee , J D , Liebhart , A , Ménard , F , Rigon , L , Waters , L B F M , Aresu , G , Meijerink , R & Spaans , M 2016 , ' Consistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHs ' , Astronomy & Astrophysics , vol. 586 , pp. A103 . https://doi.org/10.1051/0004-6361/201526538en
dc.identifier.issn0004-6361
dc.identifier.otherPURE: 240306169
dc.identifier.otherPURE UUID: 2141dcb8-cd53-4379-ab7a-eebe3976664f
dc.identifier.otherBibCode: 2015arXiv151103431W
dc.identifier.otherScopus: 84957543443
dc.identifier.otherWOS: 000369715900114
dc.identifier.urihttps://hdl.handle.net/10023/8178
dc.description.abstractWe propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine a number of key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
dc.format.extent35
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysicsen
dc.rights© ESO, 2016. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1051/0004-6361/201526538en
dc.subjectStars: formationen
dc.subjectCircumstellar matteren
dc.subjectRadiative transferen
dc.subjectLine: formationen
dc.subjectAstrochemistryen
dc.subjectMethods: numericalen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectQD Chemistryen
dc.subjectNDASen
dc.subjectBDCen
dc.subjectR2Cen
dc.subject~DC~en
dc.subject.lccQBen
dc.subject.lccQCen
dc.subject.lccQDen
dc.titleConsistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHsen
dc.typeJournal articleen
dc.contributor.sponsorScience & Technology Facilities Councilen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.identifier.doihttps://doi.org/10.1051/0004-6361/201526538
dc.description.statusPeer revieweden
dc.identifier.urlhttp://adsabs.harvard.edu/abs/2015arXiv151103431Wen
dc.identifier.grantnumberST/J001651/1en


This item appears in the following Collection(s)

Show simple item record