St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Consistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHs

Thumbnail
View/Open
Woitke_2016_A_A_Consistent_FinalPublishedVersion.pdf (6.620Mb)
Date
02/2016
Author
Woitke, Peter
Min, M.
Pinte, C.
Thi, W. -F.
Kamp, I.
Rab, C.
Anthonioz, F.
Antonellini, S.
Baldovin-Saavedra, C.
Carmona, A.
Dominik, C.
Dionatos, O.
Greaves, Jane Sophia
Güdel, M.
Ilee, John David
Liebhart, A.
Ménard, F.
Rigon, Laura
Waters, L. B. F. M.
Aresu, G.
Meijerink, R.
Spaans, M.
Funder
Science & Technology Facilities Council
Grant ID
ST/J001651/1
Keywords
Stars: formation
Circumstellar matter
Radiative transfer
Line: formation
Astrochemistry
Methods: numerical
QB Astronomy
QC Physics
QD Chemistry
NDAS
BDC
R2C
~DC~
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We propose a set of standard assumptions for the modelling of Class II and III protoplanetary disks, which includes detailed continuum radiative transfer, thermo-chemical modelling of gas and ice, and line radiative transfer from optical to cm wavelengths. The first paper of this series focuses on the assumptions about the shape of the disk, the dust opacities, dust settling, and polycyclic aromatic hydrocarbons (PAHs). In particular, we propose new standard dust opacities for disk models, we present a simplified treatment of PAHs in radiative equilibrium which is sufficient to reproduce the PAH emission features, and we suggest using a simple yet physically justified treatment of dust settling. We roughly adjust parameters to obtain a model that predicts continuum and line observations that resemble typical multi-wavelength continuum and line observations of Class II T Tauri stars. We systematically study the impact of each model parameter (disk mass, disk extension and shape, dust settling, dust size and opacity, gas/dust ratio, etc.) on all mainstream continuum and line observables, in particular on the SED, mm-slope, continuum visibilities, and emission lines including [OI] 63 μm, high-J CO lines, (sub-)mm CO isotopologue lines, and CO fundamental ro-vibrational lines. We find that evolved dust properties, i.e. large grains, often needed to fit the SED, have important consequences for disk chemistry and heating/cooling balance, leading to stronger near- to far-IR emission lines in general. Strong dust settling and missing disk flaring have similar effects on continuum observations, but opposite effects on far-IR gas emission lines. PAH molecules can efficiently shield the gas from stellar UV radiation because of their strong absorption and negligible scattering opacities in comparison to evolved dust. The observable millimetre-slope of the SED can become significantly more gentle in the case of cold disk midplanes, which we find regularly in our T Tauri models. We propose to use line observations of robust chemical tracers of the gas, such as O, CO, and H2, as additional constraints to determine a number of key properties of the disks, such as disk shape and mass, opacities, and the dust/gas ratio, by simultaneously fitting continuum and line observations.
Citation
Woitke , P , Min , M , Pinte , C , Thi , W -F , Kamp , I , Rab , C , Anthonioz , F , Antonellini , S , Baldovin-Saavedra , C , Carmona , A , Dominik , C , Dionatos , O , Greaves , J S , Güdel , M , Ilee , J D , Liebhart , A , Ménard , F , Rigon , L , Waters , L B F M , Aresu , G , Meijerink , R & Spaans , M 2016 , ' Consistent dust and gas models for protoplanetary disks I. Disk shape, dust settling, opacities, and PAHs ' , Astronomy & Astrophysics , vol. 586 , pp. A103 . https://doi.org/10.1051/0004-6361/201526538
Publication
Astronomy & Astrophysics
Status
Peer reviewed
DOI
https://doi.org/10.1051/0004-6361/201526538
ISSN
0004-6361
Type
Journal article
Rights
© ESO, 2016. This work is made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at http://dx.doi.org/10.1051/0004-6361/201526538
Collections
  • University of St Andrews Research
URL
http://adsabs.harvard.edu/abs/2015arXiv151103431W
URI
http://hdl.handle.net/10023/8178

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter