St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical modelling of cancer invasion : implications of cell adhesion variability for tumour infiltrative growth patterns

Thumbnail
View/Open
elsarticle_DomschkeTrucuGerischChaplain_revised.pdf (52.36Mb)
Date
21/11/2014
Author
Domschke, Pia
Trucu, Dumitru
Gerisch, Alf
Chaplain, Mark A. J.
Keywords
Solid tumour spread
Non-local model
Heterogeneity
RC0254 Neoplasms. Tumors. Oncology (including Cancer)
QA Mathematics
QH301 Biology
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cancer invasion, recognised as one of the hallmarks of cancer, is a complex, multiscale phenomenon involving many inter-related genetic, biochemical, cellular and tissue processes at different spatial and temporal scales. Central to invasion is the ability of cancer cells to alter and degrade an extracellular matrix. Combined with abnormal excessive proliferation and migration which is enabled and enhanced by altered cell-cell and cell-matrix adhesion, the cancerous mass can invade the neighbouring tissue. Along with tumour-induced angiogenesis, invasion is a key component of metastatic spread, ultimately leading to the formation of secondary tumours in other parts of the host body. In this paper we explore the spatio-temporal dynamics of a model of cancer invasion, where cell-cell and cell-matrix adhesion is accounted for through non-local interaction terms in a system of partial integro-differential equations. The change of adhesion properties during cancer growth and development is investigated here through time-dependent adhesion characteristics within the cell population as well as those between the cells and the components of the extracellular matrix. Our computational simulation results demonstrate a range of heterogeneous dynamics which are qualitatively similar to the invasive growth patterns observed in a number of different types of cancer, such as tumour infiltrative growth patterns (INF).
Citation
Domschke , P , Trucu , D , Gerisch , A & Chaplain , M A J 2014 , ' Mathematical modelling of cancer invasion : implications of cell adhesion variability for tumour infiltrative growth patterns ' , Journal of Theoretical Biology , vol. 361 , pp. 41-60 . https://doi.org/10.1016/j.jtbi.2014.07.010
Publication
Journal of Theoretical Biology
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.jtbi.2014.07.010
ISSN
0022-5193
Type
Journal article
Rights
© 2014, Elsevier Ltd. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1016/j.jtbi.2014.07.010
Collections
  • University of St Andrews Research
URL
http://www.sciencedirect.com/science/journal/00225193
URI
http://hdl.handle.net/10023/7712

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter