Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
View/ Open
Date
18/09/2015Author
Funder
Grant ID
BB/M000400/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The adaptive prokaryotic immune system CRISPR-Cas provides RNA-mediated protection from invading genetic elements. The fundamental basis of the system is the ability to capture small pieces of foreign DNA for incorporation into the genome at the CRISPR locus, a process known as Adaptation, which is dependent on the Cas1 and Cas2 proteins. We demonstrate that Cas1 catalyses an efficient trans-esterification reaction on branched DNA substrates, which represents the reverse- or disintegration reaction. Cas1 from both Escherichia coli and Sulfolobus solfataricus display sequence specific activity, with a clear preference for the nucleotides flanking the integration site at the leader-repeat 1 boundary of the CRISPR locus. Cas2 is not required for this activity and does not influence the specificity. This suggests that the inherent sequence specificity of Cas1 is a major determinant of the adaptation process.
Citation
Rollie , C J C , Schneider , S , Brinkmann , A S , Bolt , E & White , M F 2015 , ' Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition ' , eLife , vol. 4 , e08716 . https://doi.org/10.7554/eLife.08716
Publication
eLife
Status
Peer reviewed
ISSN
2050-084XType
Journal article
Rights
Copyright © Rollie et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Description
This work was supported by a grant from the Biotechnology and Biological Sciences Research Council (REF: BB/M000400/1 to MFW).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.