Show simple item record

Files in this item


Item metadata

dc.contributor.authorDusanowski, Ł.
dc.contributor.authorSyperek, M.
dc.contributor.authorMaryński, A.
dc.contributor.authorLi, L.H.
dc.contributor.authorMisiewicz, J.
dc.contributor.authorHöfling, S.
dc.contributor.authorKamp, M.
dc.contributor.authorFiore, A.
dc.contributor.authorSęk, G.
dc.identifier.citationDusanowski , Ł , Syperek , M , Maryński , A , Li , L H , Misiewicz , J , Höfling , S , Kamp , M , Fiore , A & Sęk , G 2015 , ' Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures ' , Applied Physics Letters , vol. 106 , no. 23 , 233107 .
dc.identifier.otherPURE: 208980783
dc.identifier.otherPURE UUID: 472430dd-75c3-4245-aa4c-9cce433384b5
dc.identifier.otherScopus: 84935884433
dc.identifier.otherWOS: 000356170900039
dc.descriptionThis research was supported by the National Science Center Grant No. 2011/01/B/ST3/02379. The experiments have partly been performed within the NLTK infrastructure, Project No. POIG. 02.02.00-003/08-00. S.H. gratefully acknowledges support by the Royal Society and the Wolfson Foundation. Date of Acceptance: 01/06/2015en
dc.description.abstractWe demonstrate a non-classical photon emitter at near infrared wavelength based on a single (In,Ga)As/GaAs epitaxially grown columnar quantum dot. Charged exciton complexes have been identified in magneto-photoluminescence. Photon auto-correlation histograms from the recombination of a trion confined in a columnar dot exhibit sub-Poissonian statistics with an antibunching dip yielding g(2)(0) values of 0.28 and 0.46 at temperature of 10 and 80 K, respectively. Our experimental findings allow considering the GaAs-based columnar quantum dot structure as an efficient single photon source operating at above liquid nitrogen temperatures, which in some characteristics can outperform the existing solutions of any material system.
dc.relation.ispartofApplied Physics Lettersen
dc.rights© 2015 AIP Publishing LLC. Copyright 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.The following article appeared in Applied Physics Letters and may be found at
dc.subjectQC Physicsen
dc.titleSingle photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructuresen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. Condensed Matter Physicsen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record