Files in this item
A unified framework for modelling wildlife population dynamics
Item metadata
dc.contributor.author | Thomas, Len | |
dc.contributor.author | Buckland, Stephen T. | |
dc.contributor.author | Newman, KB | |
dc.contributor.author | Harwood, John | |
dc.coverage.spatial | 19-34 | en |
dc.date.accessioned | 2009-04-22T13:21:37Z | |
dc.date.available | 2009-04-22T13:21:37Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | Australian and New Zealand Journal of Statistics 47(1): 19-34 March 2005 | en |
dc.identifier.issn | 1369-1473 | en |
dc.identifier.other | StAndrews.ResExp.Output.OutputID.8345 | en |
dc.identifier.uri | http://dx.doi.org/10.1111/j.1467-842x.2005.00369.x | en |
dc.identifier.uri | https://hdl.handle.net/10023/678 | |
dc.description | The pdf document contains the full article text; program code (in S-PLUS 6.1) for the example analysis is in the three text files; data is available from the Sea Mammal Research Unit (http://www.smru.st-and.ac.uk) | en |
dc.description.abstract | This paper proposes a unified framework for defining and fitting stochastic, discrete-time, discrete-stage population dynamics models. The biological system is described by a state–space model, where the true but unknown state of the population is modelled by a state process, and this is linked to survey data by an observation process. All sources of uncertainty in the inputs, including uncertainty about model specification, are readily incorporated. The paper shows how the state process can be represented as a generalization of the standard Leslie or Lefkovitch matrix. By dividing the state process into subprocesses, complex models can be constructed from manageable building blocks. The paper illustrates the approach with a model of the British Grey Seal metapopulation, using sequential importance sampling with kernel smoothing to fit the model. | en |
dc.format.extent | 2187 bytes | |
dc.format.extent | 49649 bytes | |
dc.format.extent | 2684 bytes | |
dc.format.extent | 229613 bytes | |
dc.format.extent | 2541 bytes | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | text/plain | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en | en |
dc.rights | The definitive version is available at www.blackwell-synergy.com | en |
dc.subject | auxiliary particle filter | en |
dc.subject | ecology | en |
dc.subject | Grey Seals | en |
dc.subject | Halichoerus grypus | en |
dc.subject | metapopulation | en |
dc.subject | nonlinear stochastic matrix models | en |
dc.subject | sequential importance sampling | en |
dc.subject | state–space models | en |
dc.subject | wildlife | en |
dc.subject | conservation and management | en |
dc.subject.lcc | Q | en |
dc.subject.lcc | QA | en |
dc.subject.lcc | QH | en |
dc.subject.lcc | QL | en |
dc.title | A unified framework for modelling wildlife population dynamics | en |
dc.type | Journal article | en |
dc.audience.mediator | School : Mathematics and Statistics | en |
dc.audience.mediator | Department : Statistics | en |
dc.description.version | https://doi.org/Postprint | en |
dc.publicationstatus | Published | en |
dc.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.