Files in this item
Fault detection for binary sensors in smart home environments
Item metadata
dc.contributor.author | Ye, Juan | |
dc.contributor.author | Stevenson, Graeme | |
dc.contributor.author | Dobson, Simon | |
dc.date.accessioned | 2015-04-28T14:31:05Z | |
dc.date.available | 2015-04-28T14:31:05Z | |
dc.date.issued | 2015-03-23 | |
dc.identifier.citation | Ye , J , Stevenson , G & Dobson , S 2015 , Fault detection for binary sensors in smart home environments . in 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom) . IEEE Computer Society , pp. 20-28 , IEEE International Conference on Pervasive Computing and Communications (PerCom 2015) , St Louis, Missouri , United States , 23/03/15 . https://doi.org/10.1109/PERCOM.2015.7146505 | en |
dc.identifier.citation | conference | en |
dc.identifier.other | PURE: 167420227 | |
dc.identifier.other | PURE UUID: f6ce9571-3445-4759-abfa-c073ffbed292 | |
dc.identifier.other | Scopus: 84942627224 | |
dc.identifier.other | ORCID: /0000-0002-2838-6836/work/68280962 | |
dc.identifier.other | ORCID: /0000-0001-9633-2103/work/70234164 | |
dc.identifier.other | WOS: 000380505100004 | |
dc.identifier.uri | http://hdl.handle.net/10023/6588 | |
dc.description.abstract | Experiments in assisted living confirm that such systems can provide context-aware services that enable occupants to remain active and independent. They also demonstrate that abnormal sensor events hamper the correct identification of critical (and potentially life-threatening) situations, and that existing learning, estimation, and time-based approaches are inaccurate and inflexible when applied to multiple people sharing a living space. We propose a technique that integrates the semantics of sensor readings with statistical outlier detection. We evaluate the technique against four real-world datasets that include multiple individuals, and show consistent rates of anomaly detection across different environments. | |
dc.format.extent | 9 | |
dc.language.iso | eng | |
dc.publisher | IEEE Computer Society | |
dc.relation.ispartof | 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom) | en |
dc.rights | © 2015. IEEE. This is the accepted mansucript of a conference paper originally submitted to the IEEE International Conference on Pervasive Computing and Communications, Fault detection for binary sensors in smart home environments Ye, J., Stevenson, G. & Dobson, S. 23 Mar 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom 2015). IEEE Computer Society, available from http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000551 | en |
dc.subject | Wireless sensor network | en |
dc.subject | Fault detection | en |
dc.subject | Activity recognition | en |
dc.subject | Ontologies | en |
dc.subject | QA75 Electronic computers. Computer science | en |
dc.subject | NDAS | en |
dc.subject.lcc | QA75 | en |
dc.title | Fault detection for binary sensors in smart home environments | en |
dc.type | Conference item | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. School of Computer Science | en |
dc.identifier.doi | https://doi.org/10.1109/PERCOM.2015.7146505 | |
dc.identifier.url | http://www.percom.org/ | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.