Nonredundant Raman imaging using optical eigenmodes
Date
20/10/2014Author
Grant ID
317744
EP/J01771X/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Various forms of imaging schemes have emerged over the last decade that are based on correlating variations in incident illuminating light fields to the outputs of single “bucket” detectors. However, to date, the role of the orthogonality of the illumination fields has largely been overlooked, and, furthermore, the field has not progressed beyond bright field imaging. By exploiting the concept of orthogonal illuminating fields, we demonstrate the application of optical eigenmodes (OEis) to wide-field, scan-free spontaneous Raman imaging, which is notoriously slow in wide-field mode. The OEi approach enables a form of indirect imaging that exploits both phase and amplitude in image reconstruction. The use of orthogonality enables us to nonredundantly illuminate the sample and, in particular, use a subset of illuminating modes to obtain the majority of information from the sample, thus minimizing any photobleaching or damage of the sample. The crucial incorporation of phase, in addition to amplitude, in the imaging process significantly reduces background noise and results in an improved signal-to-noise ratio for the image while reducing the number of illuminations. As an example we can reconstruct images of a surface-enhanced Raman spectroscopy sample with approximately an order of magnitude fewer acquisitions. This generic approach may readily be applied to other imaging modalities such as fluorescence microscopy or nonlinear vibrational microscopy.
Citation
Kosmeier , S , Zolotovskaya , S , De Luca , A C , Riches , A C , Herrington , C S , Dholakia , K & Mazilu , M 2014 , ' Nonredundant Raman imaging using optical eigenmodes ' , Optica , vol. 1 , no. 4 , pp. 257-263 . https://doi.org/10.1364/OPTICA.1.000257
Publication
Optica
Status
Peer reviewed
ISSN
2334-2536Type
Journal article
Rights
© 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Description
We thank funding from the UK Engineering and Physical Sciences Research Council namely grant EP/J01771X/1 and EU FP7 grant FAMOS.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.