St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonredundant Raman imaging using optical eigenmodes

Thumbnail
View/Open
Mazilu_2015_Optica_Raman_AM.pdf (4.348Mb)
Date
20/10/2014
Author
Kosmeier, Sebastian
Zolotovskaya, Svetlana
De Luca, Anna Chiara
Riches, Andrew C
Herrington, C Simon
Dholakia, Kishan
Mazilu, Michael
Funder
European Commission
EPSRC
Grant ID
317744
EP/J01771X/1
Keywords
QC Physics
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Various forms of imaging schemes have emerged over the last decade that are based on correlating variations in incident illuminating light fields to the outputs of single “bucket” detectors. However, to date, the role of the orthogonality of the illumination fields has largely been overlooked, and, furthermore, the field has not progressed beyond bright field imaging. By exploiting the concept of orthogonal illuminating fields, we demonstrate the application of optical eigenmodes (OEis) to wide-field, scan-free spontaneous Raman imaging, which is notoriously slow in wide-field mode. The OEi approach enables a form of indirect imaging that exploits both phase and amplitude in image reconstruction. The use of orthogonality enables us to nonredundantly illuminate the sample and, in particular, use a subset of illuminating modes to obtain the majority of information from the sample, thus minimizing any photobleaching or damage of the sample. The crucial incorporation of phase, in addition to amplitude, in the imaging process significantly reduces background noise and results in an improved signal-to-noise ratio for the image while reducing the number of illuminations. As an example we can reconstruct images of a surface-enhanced Raman spectroscopy sample with approximately an order of magnitude fewer acquisitions. This generic approach may readily be applied to other imaging modalities such as fluorescence microscopy or nonlinear vibrational microscopy.
Citation
Kosmeier , S , Zolotovskaya , S , De Luca , A C , Riches , A C , Herrington , C S , Dholakia , K & Mazilu , M 2014 , ' Nonredundant Raman imaging using optical eigenmodes ' , Optica , vol. 1 , no. 4 , pp. 257-263 . https://doi.org/10.1364/OPTICA.1.000257
Publication
Optica
Status
Peer reviewed
DOI
https://doi.org/10.1364/OPTICA.1.000257
ISSN
2334-2536
Type
Journal article
Rights
© 2014 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
Description
We thank funding from the UK Engineering and Physical Sciences Research Council namely grant EP/J01771X/1 and EU FP7 grant FAMOS.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6394

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter