Hyperfine Stark effect of shallow donors in silicon
View/ Open
Date
18/11/2014Author
Funder
Grant ID
EP/I035536/1
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a complete theoretical treatment of Stark effects in bulk doped silicon, whose predictions are supported by experimental measurements. A multivalley effective mass theory, dealing nonperturbatively with valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable picture of the donor wave function within a relatively simple framework. Variational optimization of the 1s donor binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric field in order to model Stark physics: with no extra ad hoc parameters, variational minimization of the complete donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling reveal very close agreement for all the donors measured (P, As, Sb, and Bi). Finally, we estimate field ionization thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as ≈10 MHz.
Citation
Pica , G , Wolfowicz , G , Urdampilleta , M , Thewalt , M L W , Riemann , H , Abrosimov , N V , Becker , P , Pohl , H-J , Morton , J J L , Bhatt , R N , Lyon , S A & Lovett , B W 2014 , ' Hyperfine Stark effect of shallow donors in silicon ' , Physical Review. B, Condensed matter and materials physics , vol. 90 , no. 19 , 195204 . https://doi.org/10.1103/PhysRevB.90.195204
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
ISSN
1098-0121Type
Journal article
Rights
© 2014 American Physical Society. Reproduced in accordance with APS transfer of copyright agreement. The final version can also be found via the publisher's website: http://dx.doi.org/10.1103/PhysRevB.90.195204
Description
This research was funded by the joint EPSRC (EP/I035536) / NSF (DMR-1107606) Materials World Network grant (BWL, GP, JJLM, SAL), EPSRC grant EP/K025562/1 (BWL and JJLM), the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 279781 (JJLM), partly by the NSF MRSEC grant DMR-0819860 (SAL), the Department of Energy, Office of Basic Energy Sciences grant DE-SC0002140 (RNB). BWL and JJLM thank the Royal Society for a University Research Fellowship.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.