St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hyperfine Stark effect of shallow donors in silicon

Thumbnail
View/Open
Pica_2014_PRB_Hyperfine.pdf (1.951Mb)
Date
18/11/2014
Author
Pica, G.
Wolfowicz, G.
Urdampilleta, M.
Thewalt, M.L.W.
Riemann, H.
Abrosimov, N.V.
Becker, P.
Pohl, H.-J.
Morton, J.J.L.
Bhatt, R.N.
Lyon, S.A.
Lovett, B.W.
Funder
EPSRC
Grant ID
EP/I035536/1
Keywords
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present a complete theoretical treatment of Stark effects in bulk doped silicon, whose predictions are supported by experimental measurements. A multivalley effective mass theory, dealing nonperturbatively with valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable picture of the donor wave function within a relatively simple framework. Variational optimization of the 1s donor binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric field in order to model Stark physics: with no extra ad hoc parameters, variational minimization of the complete donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling reveal very close agreement for all the donors measured (P, As, Sb, and Bi). Finally, we estimate field ionization thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as ≈10 MHz.
Citation
Pica , G , Wolfowicz , G , Urdampilleta , M , Thewalt , M L W , Riemann , H , Abrosimov , N V , Becker , P , Pohl , H-J , Morton , J J L , Bhatt , R N , Lyon , S A & Lovett , B W 2014 , ' Hyperfine Stark effect of shallow donors in silicon ' , Physical Review. B, Condensed matter and materials physics , vol. 90 , no. 19 , 195204 . https://doi.org/10.1103/PhysRevB.90.195204
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.90.195204
ISSN
1098-0121
Type
Journal article
Rights
© 2014 American Physical Society. Reproduced in accordance with APS transfer of copyright agreement. The final version can also be found via the publisher's website: http://dx.doi.org/10.1103/PhysRevB.90.195204
Description
This research was funded by the joint EPSRC (EP/I035536) / NSF (DMR-1107606) Materials World Network grant (BWL, GP, JJLM, SAL), EPSRC grant EP/K025562/1 (BWL and JJLM), the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 279781 (JJLM), partly by the NSF MRSEC grant DMR-0819860 (SAL), the Department of Energy, Office of Basic Energy Sciences grant DE-SC0002140 (RNB). BWL and JJLM thank the Royal Society for a University Research Fellowship.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/6382

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter