Show simple item record

Files in this item

Thumbnail
Thumbnail
Thumbnail

Item metadata

dc.contributor.advisorSlawin, Alexandra M. Z.
dc.contributor.authorAthukorala Arachchige, Kasun Sankalpa
dc.coverage.spatial[15], 192en_US
dc.date.accessioned2015-03-26T15:51:27Z
dc.date.available2015-03-26T15:51:27Z
dc.date.issued2014-06-25
dc.identifieruk.bl.ethos.640800
dc.identifier.urihttps://hdl.handle.net/10023/6363
dc.description.abstractOrganic frameworks with rigid backbones, such as acenaphthene, are highly suitable for the study of interatomic interactions. The short “natural” peri-distance (2.44 Å) and the rigidity of the aromatic system causes considerable steric strain between peri-substituted heteroatoms. As a consequence, substitution at both peri-positions leads to in- and out-of-plane distortions, which often result in buckling of the ring system. In order to relax this geometric strain, weak bonding interactions can also exist between the peri-substituents. This thesis focuses on the synthesis, structural characterisation and investigation of a range of sterically crowded peri-substituted acenaphthene compounds. This involves the study of the acenaphthene geometry, through X-ray crystallography when different peri-substituents occupy the close 5,6-positions; our main focus is to study weak non-bonded interactions that can occur across the peri-gap, for example weakly attractive three-centre four-electron (3c-4e) type interactions which are known to prevail in such compounds under the appropriate conditions. Repulsion within these systems, resulting from the steric crowding of the peri-space is also investigated, employing changes in bond lengths, bay-region angle splay, displacement of atoms from the mean plane and central acenaphthene torsion angles to help quantify the degree of acenaphthene distortion, which are all conveniently probed by the peri-distance. To this end we have synthesised a range of novel sterically crowded mixed bromo-tin acenaphthene derivatives (Chapter 3), chalcogen-tin acenaphthene molecules (Chapter 4), phosphorus–tin derivatives (Chapter 5) and a series of homologous tin-tin acenaphthenes (Chapter 6). All the compounds studied in this thesis were characterised by multinuclear NMR spectroscopy and X-ray crystallography in an effort to gain a greater understanding of the deformation that occurs when disparate functionalities are located in close proximity and explore the potential for weak non-covalent intramolecular interactions to occur.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subjectAcenaphtheneen_US
dc.subjectX-ray crystallographyen_US
dc.subjectPeri-substitutionen_US
dc.subjectDonor-acceptoren_US
dc.subjectIntramolecularen_US
dc.subjectTinen_US
dc.subjectPhosphorusen_US
dc.subjectChalcogenen_US
dc.subjectBromineen_US
dc.subjectThree centre-four electronen_US
dc.subject.lccQD341.H9A8
dc.subject.lcshPolycyclic aromatic hydrocarbons--Synthesisen_US
dc.subject.lcshOrganotin compoundsen_US
dc.subject.lcshX-ray crystallographyen_US
dc.titleSynthesis and crystallographic studies of novel organotin acenaphthene compoundsen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.rights.embargodatePrint and electronic copy restricted until 19th May 2016en_US
dc.rights.embargoreasonThesis restricted in accordance with University regulationsen_US


This item appears in the following Collection(s)

Show simple item record