St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and crystallographic studies of novel organotin acenaphthene compounds

Thumbnail
View/Open
KasunAthukoralaArachchigePhDThesis.pdf (4.844Mb)
KSAthukoralaArachchige_Appendix 2.pdf (4.163Mb)
KSAthukoralaArachchige_Appendix 3.pdf (340.9Kb)
KSAthukoralaArachchige_Appendix 2 CIF files.zip (1.166Mb)
KSAthukoralaArachchige_Appendix 3 CIF files.zip (435.1Kb)
Date
25/06/2014
Author
Athukorala Arachchige, Kasun Sankalpa
Supervisor
Slawin, Alexandra M. Z.
Keywords
Acenaphthene
X-ray crystallography
Peri-substitution
Donor-acceptor
Intramolecular
Tin
Phosphorus
Chalcogen
Bromine
Three centre-four electron
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Organic frameworks with rigid backbones, such as acenaphthene, are highly suitable for the study of interatomic interactions. The short “natural” peri-distance (2.44 Å) and the rigidity of the aromatic system causes considerable steric strain between peri-substituted heteroatoms. As a consequence, substitution at both peri-positions leads to in- and out-of-plane distortions, which often result in buckling of the ring system. In order to relax this geometric strain, weak bonding interactions can also exist between the peri-substituents. This thesis focuses on the synthesis, structural characterisation and investigation of a range of sterically crowded peri-substituted acenaphthene compounds. This involves the study of the acenaphthene geometry, through X-ray crystallography when different peri-substituents occupy the close 5,6-positions; our main focus is to study weak non-bonded interactions that can occur across the peri-gap, for example weakly attractive three-centre four-electron (3c-4e) type interactions which are known to prevail in such compounds under the appropriate conditions. Repulsion within these systems, resulting from the steric crowding of the peri-space is also investigated, employing changes in bond lengths, bay-region angle splay, displacement of atoms from the mean plane and central acenaphthene torsion angles to help quantify the degree of acenaphthene distortion, which are all conveniently probed by the peri-distance. To this end we have synthesised a range of novel sterically crowded mixed bromo-tin acenaphthene derivatives (Chapter 3), chalcogen-tin acenaphthene molecules (Chapter 4), phosphorus–tin derivatives (Chapter 5) and a series of homologous tin-tin acenaphthenes (Chapter 6). All the compounds studied in this thesis were characterised by multinuclear NMR spectroscopy and X-ray crystallography in an effort to gain a greater understanding of the deformation that occurs when disparate functionalities are located in close proximity and explore the potential for weak non-covalent intramolecular interactions to occur.
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: Print and electronic copy restricted until 19th May 2016
Embargo Reason: Thesis restricted in accordance with University regulations
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/6363

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter