Accretion discs as regulators of stellar angular momentum evolution in the ONC and Taurus-Auriga
Date
21/10/2014Funder
Grant ID
ST/J003255/1
ST/J001651/1
PP/F000065/1
Keywords
Metadata
Show full item recordAbstract
In light of recent substantial updates to spectral type estimations and newly established intrinsic colours, effective temperatures, and bolometric corrections for pre-main sequence (PMS) stars, we re-address the theory of accretion disc-regulated stellar angular momentum (AM) evolution. We report on the compilation of a consistent sample of fully convective stars within two of the most well-studied and youngest, nearby regions of star formation: the Orion nebula Cluster and Taurus-Auriga. We calculate the average specific stellar AM (j⋆) assuming solid body rotation, using surface rotation periods gathered from the literature and new estimates of stellar radii and ages. We use published Spitzer IRAC fluxes to classify our stars as Class II or Class III and compare their j⋆ evolution. Our results suggest that disc dispersal is a rapid process that occurs at a variety of ages. We find a consistent j⋆ reduction rate between the Class II and Class III PMS stars which we interpret as indicating a period of accretion disc-regulated AM evolution followed by near-constant AM evolution once the disc has dissipated. Furthermore, assuming our observed spread in stellar ages is real, we find that the removal rate of j⋆ during the Class II phase is more rapid than expected by contraction at constant stellar rotation rate. A much more efficient process of AM removal must exist, most likely in the form of an accretion-driven stellar wind or other outflow from the star-disc interaction region or extended disc surface.
Citation
Davies , C , Gregory , S & Greaves , J S 2014 , ' Accretion discs as regulators of stellar angular momentum evolution in the ONC and Taurus-Auriga ' , Monthly Notices of the Royal Astronomical Society , vol. 444 , no. 2 , pp. 1157-1176 . https://doi.org/10.1093/mnras/stu1488
Publication
Monthly Notices of the Royal Astronomical Society
Status
Peer reviewed
ISSN
0035-8711Type
Journal article
Rights
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2014 The Authors, Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Description
CLD's PhD is supported by a Science and Technology Facilities Council (STFC) studentship from the government of UK. SGG acknowledges support from the STFC via an Ernest Rutherford Fellowship [ST/J003255/1].Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.