St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Discovery of a visual T-dwarf triple system and binarity at the L/T transition

Thumbnail
View/Open
Scholz_2013_TAJ_Discovery.pdf (1.409Mb)
Date
20/11/2013
Author
Radigan, Jacqueline
Jayawardhana, Ray
Lafrenière, David
Dupuy, Trent J.
Liu, Michael C.
Scholz, Alexander
Keywords
Binaries: visual
Brown dwarfs
Stars: individual: 2MASS J08381155+1511155
QB Astronomy
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We present new high contrast imaging of eight L/T transition brown dwarfs (BDs) using the NIRC2 camera on the Keck II telescope. One of our targets, the T3.5 dwarf 2MASS J08381155+1511155, was resolved into a hierarchal triple with projected separations of 2.5 ± 0.5 AU and 27 ± 5 AU for the BC and A(BC) components, respectively. Resolved OSIRIS spectroscopy of the A(BC) components confirms that all system members are T dwarfs. The system therefore constitutes the first triple T-dwarf system ever reported. Using resolved photometry to model the integrated-light spectrum, we infer spectral types of T3 ± 1, T3 ± 1, and T4.5 ± 1 for the A, B, and C components, respectively. The uniformly brighter primary has a bluer J – Ks color than the next faintest component, which may reflect a sensitive dependence of the L/T transition temperature on gravity, or alternatively divergent cloud properties among components. Relying on empirical trends and evolutionary models we infer a total system mass of 0.034-0.104 M ☉ for the BC components at ages of 0.3-3 Gyr, which would imply a period of 12-21 yr assuming the system semimajor axis to be similar to its projection. We also infer differences in effective temperatures and surface gravities between components of no more than ~150 K and ~0.1 dex. Given the similar physical properties of the components, the 2M0838+15 system provides a controlled sample for constraining the relative roles of effective temperature, surface gravity, and dust clouds in the poorly understood L/T transition regime. For an age of 3 Gyr we estimate a binding energy of ~20 × 1041 erg for the wide A(BC) pair, which falls above the empirical minimum found for typical BD binaries, and suggests that the system may have been able to survive a dynamical ejection during formation. Combining our imaging survey results with previous work we find an observed binary fraction of 4/18 or 22+10-8% for unresolved spectral types of L9-T4 at separations greater than or similar to 0.''1. This translates into a volume-corrected frequency of 13+7-6%, which is similar to values of ~9%-12% reported outside the transition. Our reported L/T transition binary fraction is roughly twice as large as the binary fraction of an equivalent L9-T4 sample selected from primary rather than unresolved spectral types (6+6-4%); however, this increase is not yet statistically significant and a larger sample is required to settle the issue.
Citation
Radigan , J , Jayawardhana , R , Lafrenière , D , Dupuy , T J , Liu , M C & Scholz , A 2013 , ' Discovery of a visual T-dwarf triple system and binarity at the L/T transition ' , Astrophysical Journal , vol. 778 , no. 1 , 36 . https://doi.org/10.1088/0004-637X/778/1/36
Publication
Astrophysical Journal
Status
Peer reviewed
DOI
https://doi.org/10.1088/0004-637X/778/1/36
ISSN
0004-637X
Type
Journal article
Rights
© 2013. The American Astronomical Society. All rights reserved.
Collections
  • Physics & Astronomy Research
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5496

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter