St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

Thumbnail
View/Open
Reid_2014_PRB_Wiedemann.pdf (1.237Mb)
Date
23/01/2014
Author
Reid, Jean-Philippe
Tanatar, M. A.
Daou, R.
Hu, Rongwei
Petrovic, C.
Taillefer, Louis
Keywords
Phase-transition
Superconductivity
Metals
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The in-plane thermal conductivity κ and electrical resistivity ρ of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w≡L0T/κ and ρ, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T∗ ≃ 0.35 K, which depends weakly on H, w(T) and ρ(T) both deviate downward and converge as T → 0. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.
Citation
Reid , J-P , Tanatar , M A , Daou , R , Hu , R , Petrovic , C & Taillefer , L 2014 , ' Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh 2 Si 2 ' , Physical Review. B, Condensed matter and materials physics , vol. 89 , no. 4 , 045130 . https://doi.org/10.1103/PhysRevB.89.045130
Publication
Physical Review. B, Condensed matter and materials physics
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevB.89.045130
ISSN
1098-0121
Type
Journal article
Rights
©2014 American Physical Society
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5433

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter