Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorArita, Yoshihiko
dc.contributor.authorPloschner, Martin
dc.contributor.authorAntkowiak, Maciej
dc.contributor.authorGunn-Moore, Frank
dc.contributor.authorDholakia, Kishan
dc.contributor.editorHeisterkamp, A
dc.contributor.editorHerman, PR
dc.contributor.editorMeunier, M
dc.contributor.editorNolte, S
dc.date.accessioned2014-09-03T15:31:01Z
dc.date.available2014-09-03T15:31:01Z
dc.date.issued2014-03-07
dc.identifier.citationArita , Y , Ploschner , M , Antkowiak , M , Gunn-Moore , F & Dholakia , K 2014 , Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle . in A Heisterkamp , PR Herman , M Meunier & S Nolte (eds) , Frontiers in Ultrafast Optics : Biomedical, Scientific, and Industrial Applications XIV . vol. 8972 , Proceedings of SPIE , vol. 8972 , SPIE , Bellingham , Conference on Frontiers in Ultrafast Optics - Biomedical, Scientific, and Industrial Applications XIV , Canada , 2/02/14 . https://doi.org/10.1117/12.2039647en
dc.identifier.citationconferenceen
dc.identifier.issn0277-786X
dc.identifier.otherPURE: 145518979
dc.identifier.otherPURE UUID: b5ce3860-0cfe-495a-b455-7653e2766a5e
dc.identifier.otherWOS: 000336035000001
dc.identifier.otherScopus: 84900502342
dc.identifier.otherORCID: /0000-0003-3422-3387/work/34730430
dc.identifier.otherWOS: 000336035000001
dc.identifier.urihttp://hdl.handle.net/10023/5337
dc.description.abstractCell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of 100nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.
dc.format.extent7
dc.language.isoeng
dc.publisherSPIE
dc.relation.ispartofFrontiers in Ultrafast Opticsen
dc.relation.ispartofseriesProceedings of SPIEen
dc.rightsCopyright 2014 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.en
dc.subjectLaser-induced breakdownen
dc.subjectLaser trappingen
dc.subjectUltrasounden
dc.subjectSurface plasmonsen
dc.subjectLYSISen
dc.subjectQC Physicsen
dc.subject.lccQCen
dc.titleSingle cell transfection by laser-induced breakdown of an optically trapped gold nanoparticleen
dc.typeConference itemen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews. School of Medicineen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. Institute of Behavioural and Neural Sciencesen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1117/12.2039647


This item appears in the following Collection(s)

Show simple item record