St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle

Thumbnail
View/Open
Arita_2014_SPIE_Single.pdf (1.040Mb)
Date
07/03/2014
Author
Arita, Yoshihiko
Ploschner, Martin
Antkowiak, Maciej
Gunn-Moore, Frank
Dholakia, Kishan
Keywords
Laser-induced breakdown
Laser trapping
Ultrasound
Surface plasmons
LYSIS
QC Physics
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Cell selective introduction of therapeutic agents remains a challenging problem. Cavitation-based therapies including ultrasound-induced sonoporation and laser-induced optoporation have led the way for novel approaches to provide the potential of sterility and cell selectivity compared with viral or biochemical counterparts. Acoustic streaming, shockwaves and liquid microjets associated with the cavitation dynamics are implicated in gene and drug delivery. These approaches, however, often lead to non-uniform and sporadic molecular uptake that lacks refined spatial control and suffers from a significant loss of cell viability. Here we demonstrate spatially controlled cavitation instigated by laser-induced breakdown of an optically trapped single gold nanoparticle. Our unique approach employs optical tweezers to trap a single nanoparticle, which when irradiated by a nanosecond laser pulse is subject to laser-induced breakdown followed by cavitation. Using this method for laser-induced cavitation, we can gain additional degrees of freedom for the cavitation process the particle material, its size, and its position relative to cells or tissues. We show the energy breakdown threshold of gold nanoparticles of 100nm with a single nanosecond laser pulse at 532 nm is three orders of magnitude lower than that for water, which leads to gentle nanocavitation enabling single cell transfection. We optimize the shear stress to the cells from the expanding bubble to be in the range of 1-10 kPa for transfection by precisely positioning a trapped gold nanoparticle, and thus nanobubble, relative to a cell of interest. The method shows transfection of plasmid-DNA into individual mammalian cells with an efficiency of 75%.
Citation
Arita , Y , Ploschner , M , Antkowiak , M , Gunn-Moore , F & Dholakia , K 2014 , Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle . in A Heisterkamp , PR Herman , M Meunier & S Nolte (eds) , Frontiers in Ultrafast Optics : Biomedical, Scientific, and Industrial Applications XIV . vol. 8972 , Proceedings of SPIE , vol. 8972 , SPIE , Bellingham , Conference on Frontiers in Ultrafast Optics - Biomedical, Scientific, and Industrial Applications XIV , Canada , 2/02/14 . https://doi.org/10.1117/12.2039647
 
conference
 
Publication
Frontiers in Ultrafast Optics
DOI
https://doi.org/10.1117/12.2039647
ISSN
0277-786X
Type
Conference item
Rights
Copyright 2014 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/5337

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter