Free products in R. Thompson’s group V
View/ Open
Date
11/2013Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We investigate some product structures in R. Thompson's group $ V$, primarily by studying the topological dynamics associated with $ V$'s action on the Cantor set C. We draw attention to the class D(V,C) of groups which have embeddings as demonstrative subgroups of V whose class can be used to assist in forming various products. Note that D(V,C) contains all finite groups, the free group on two generators, and Q/Z, and is closed under passing to subgroups and under taking direct products of any member by any finite member. If G≤V and H ∈ D(V,C), then G~H embeds into V. Finally, if G, H ∈ D(V,C), then G*H embeds in V. Using a dynamical approach, we also show the perhaps surprising result that Z2 * Z does not embed in V, even though V has many embedded copies of Z2 and has many embedded copies of free products of various pairs of its subgroups.
Citation
Bleak , C P & Salazar-Diaz , O 2013 , ' Free products in R. Thompson’s group V ' , Transactions of the American Mathematical Society , vol. 365 , no. 11 , pp. 5967-5997 . https://doi.org/10.1090/S0002-9947-2013-05823-0
Publication
Transactions of the American Mathematical Society
Status
Peer reviewed
ISSN
0002-9947Type
Journal article
Rights
© Copyright 2013 American Mathematical Society. First published in Transactions of the American Mathematical Society in volume 365 2013, published by the American Mathematical Society
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.